Skip to main content

Brain Organization and Computation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4527))

Abstract

Theories of how the brain computes can be differentiated in three general conceptions: the algorithmic approach, the neural information processing (neurocomputational) approach and the dynamical systems approach. The discussion of key features of brain organization (i.e. structure with function) demonstrates the self-organizing character of brain processes at the various spatio-temporal scales. It is argued that the features associated with the brain are in support of its description in terms of dynamical systems theory, and of a concept of computation to be developed further within this framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heylighen, F., Gershenson, C.: The meaning of self-organization in computing. IEEE Intelligent Systems, 72–86 (2003)

    Google Scholar 

  2. Schierwagen, A.: Real neurons and their circuitry: Implications for brain theory. iir-reporte, AdW der DDR, Eberswalde, 17–20 (1989)

    Google Scholar 

  3. Schierwagen, A.: Modelle der Neuroinformatik als Mittler zwischen neurobiologischen Fakten und Kognitionstheorien. In: Maaz, J. (ed.) Das sichtbare Denken, pp. 131–152. Rodopi-Verlag, Amsterdam (1993)

    Google Scholar 

  4. Senjowski, T.J., Koch, C., Churchland, P.S.: Computational Neuroscience. Science 241, 1299–1306 (1988)

    Article  Google Scholar 

  5. Schierwagen, A.: Growth, structure and dynamics of real neurons: Model studies and experimental results. Biomed. Biochim. Acta 49, 709–722 (1990)

    Google Scholar 

  6. Schierwagen, A., Claus, C.: Dendritic morphology and signal delay in superior colliculus neurons. Neurocomputing 38-40, 343–350 (2001)

    Article  Google Scholar 

  7. Schierwagen, A., Van Pelt, J.: Synaptic input processing in complex neurons: A model study. In: Moreno-Diaz jr., R., Quesada-Arencibia, A., Rodriguez, J.-C. (eds.) CAST and Tools for Complexity in Biological, Physical and Engineering Systems - EUROCAST 2003, pp. 221–225. IUCTC, Las Palmas (2003)

    Google Scholar 

  8. Van Pelt, J., Schierwagen, A.: Morphological analysis and modeling of neuronal dendrites. Math. Biosciences 188, 147–155 (2004)

    Article  MATH  Google Scholar 

  9. Schierwagen, A., Alpár, A., Gärtner, U.: Scaling properties of pyramidal neurons in mice neocortex. Mathematical Biosciences (2006), doi:10.1016/j.mbs.2006.08.019

    Google Scholar 

  10. Van Ooyen, A. (ed.): Modeling Neural Development. MIT Press, Cambridge (2003)

    Google Scholar 

  11. Segev, I.: Cable and Compartmental Models of Dendritic Trees. In: Bower, J.M., Beeman, D. (eds.) The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System, pp. 53–81. Telos, Santa Clara (1998)

    Google Scholar 

  12. Schierwagen, A., Grantyn, R.: Quantitative morphological analysis of deep superior colliculus neurons stained intracellularly with HRP in the cat. J. Hirnforsch. 27, 611–623 (1986)

    Google Scholar 

  13. Braitenberg, V., Schüz, A.: Anatomy of the Cortex: Statistics and Geometry. Springer, Berlin (1991)

    Google Scholar 

  14. Creutzfeld, O.: Cortex cerebri. Leistung, strukturelle und funktionelle Organisation der Hirnrinde. Springer, Berlin (1983)

    Google Scholar 

  15. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)

    Google Scholar 

  16. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195, 215–243 (1968)

    Google Scholar 

  17. Sporns, O., Tononi, G., Edelman, G.M.: Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behav. Brain Res. 135, 69–74 (2002)

    Article  Google Scholar 

  18. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  19. Churchland, P., Grush, R.: Computation and the brain. In: Keil, F., Wilson, R.A. (eds.) The MIT Encyclopedia of Cognitive Sciences, pp. 155–158. MIT Press, Cambridge (1999)

    Google Scholar 

  20. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 42, 230–265 (1936)

    Article  MATH  Google Scholar 

  21. Mira, J., Delgado, A.E.: On how the computational paradigm can help us to model and interpret the neural function. Natural Computing (2006), doi:10.1007/s11047-006-9008-6

    Google Scholar 

  22. de Charms, R.C., Zador, A.M.: Neural representation and the cortical code. Ann. l Rev. Neurosci. 23, 613–647 (2000)

    Article  Google Scholar 

  23. Searle, J.R.: Is the brain a digital computer? Proc. Amer. Philos. Assoc. 64, 21–37 (1990)

    Article  Google Scholar 

  24. Grush, R.: The semantic challenge to computational neuroscience. In: Machamer, P.K., Grush, R., McLaughlin, P. (eds.) Theory and method in the neurosciences, pp. 155–172. University of Pittsburgh Press, Pittsburg (2001)

    Google Scholar 

  25. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 52, 99–115 (1943)

    Google Scholar 

  26. Euler, T., Denk, W.: Dendritic processing. Curr. Opin. Neurobiol. 11, 415–422 (2001)

    Article  Google Scholar 

  27. Polsky, A., Mel, B.W., Schiller, J.: Computational subunits in thin dendrites of pyramidal cells. Nature Neurosci. 7, 621–627 (2004)

    Article  Google Scholar 

  28. London, M., Hausser, M.: Dendritic computation. Annu. Rev. Neurosci. 28, 503–532 (2005)

    Article  Google Scholar 

  29. Maass, W., Zador, A.M.: Synapses as Computational Units. Neural Computation 11, 903–917 (1999)

    Article  Google Scholar 

  30. Zador, A.M.: The basic unit of computation. Nature Neurosci. 3(Suppl.), 1167 (2000)

    Google Scholar 

  31. Hubel, D.H., Wiesel, T.N.: Functional architecture of macaque monkey cortex. Proc. R. Soc. London Ser. B 198, 1–59 (1977)

    Article  Google Scholar 

  32. Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120, 701–722 (1997)

    Article  Google Scholar 

  33. Szentágothai, J.: The modular architectonic principle of neural centers. Rev. Physiol. Bioche. Pharmacol. 98, 11–61 (1983)

    Article  Google Scholar 

  34. Markram, H.: The Blue Brain Project. Nature Rev. Neurosci. 7, 153–160 (2006)

    Article  Google Scholar 

  35. Maass, W., Markram, H.: Theory of the computational function of microcircuit dynamics. In: Grillner, S., Graybiel, A.M. (eds.) The Interface between Neurons and Global Brain Function, Dahlem Workshop Report 93, pp. 371–390. MIT Press, Cambridge (2006)

    Google Scholar 

  36. DeFelipe, J., Alonso-Nanclares, L., Arellano, J.I.: Microstructure of the neocortex: Comparative aspects. J. Neurocytol. 31, 299–316 (2002)

    Article  Google Scholar 

  37. Horton, J.C., Adams, D.L.: The cortical column: a structure without a function. Phil. Trans. R. Soc. B 360, 837–862 (2005)

    Article  Google Scholar 

  38. Siegelmann, H.T., Fishman, S.: Analog computation with dynamical systems. Physica D 120, 214–235 (1998)

    Article  MATH  Google Scholar 

  39. Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing Limit. Birkhauser, Boston (1999)

    MATH  Google Scholar 

  40. Schierwagen, A., Werner, H.: Analog computations with mapped neural fields. In: Trappl, R. (ed.) Cybernetics and Systems ’96, pp. 1084–1089. Austrian Society for Cybernetic Studies, Vienna (1996)

    Google Scholar 

  41. Schierwagen, A., Werner, H.: Fast orienting movements to visual targets: Neural field model of dynamic gaze control. In: 6th European Symposium on Artificial Neural Networks - ESANN ’98, pp. 91–98. D-facto publications, Brussels (1998)

    Google Scholar 

  42. Wellner, J., Schierwagen, A.: Cellular-Automata-like Simulations of Dynamic Neural Fields. In: Holcombe, M., Paton, R.C. (eds.) Information Processing in Cells and Tissues, pp. 295–304. Plenum, New York (1998)

    Google Scholar 

  43. Adamatzky, A.: Computing in Nonlinear Media: Make Waves, Study Collisions. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 1–10. Springer, Heidelberg (2001)

    Google Scholar 

  44. Sienko, T., Adamatzky, A., Rambidi, N.G., Conrad, M. (eds.): Molecular Computing. MIT Press, Cambridge (2003)

    MATH  Google Scholar 

  45. Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trends Cogn. Sci. 8, 418–425 (2004)

    Article  Google Scholar 

  46. Buzsaki, G., Geisler, C., Henze, D.A., Wang, X.J.: Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci. 27, 186–193 (2004)

    Article  Google Scholar 

  47. Bassett, D.S., Bullmore, E.: Small-world brain networks. Neuroscientist 12, 512–523 (2006)

    Article  Google Scholar 

  48. Shimizu, H.: Biological autonomy: the self-creation of constraints. Applied Mathematics and Computation 56, 177–201 (1993)

    Article  MATH  Google Scholar 

  49. Pasemann, F.: Neuromodules: A dynamical systems approach to brain modelling. In: Herrmann, H.J., Wolf, D.E., Poppel, E. (eds.) Supercomputing in Brain Research: From Tomography to Neural Networks, pp. 331–348. World Scientific, Singapore (1995)

    Google Scholar 

  50. Hülse, M., Wischmann, S., Pasemann, F.: The role of non-linearity for evolved multifunctional robot behavior. In: Moreno, J.M., Madrenas, J., Cosp, J. (eds.) ICES 2005. LNCS, vol. 3637, pp. 108–118. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira José R. Álvarez

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Schierwagen, A. (2007). Brain Organization and Computation. In: Mira, J., Álvarez, J.R. (eds) Bio-inspired Modeling of Cognitive Tasks. IWINAC 2007. Lecture Notes in Computer Science, vol 4527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73053-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73053-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73052-1

  • Online ISBN: 978-3-540-73053-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics