Skip to main content

Predicting Human Immunodeficiency Virus (HIV) Drug Resistance Using Recurrent Neural Networks

  • Conference paper
Bio-inspired Modeling of Cognitive Tasks (IWINAC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4527))

Abstract

Predicting HIV resistance to drugs is one of many problems for which bioinformaticians have implemented and trained machine learning methods, such as neural networks. Predicting HIV resistance would be much easier if we could directly use the three-dimensional (3D) structure of the targeted protein sequences, but unfortunately we rarely have enough structural information available to train a neural network. Fur-thermore, prediction of the 3D structure of a protein is not straightforward. However, characteristics related to the 3D structure can be used to train a machine learning algorithm as an alternative to take into account the information of the protein folding in the 3D space. Here, starting from this philosophy, we select the amino acid energies as features to predict HIV drug resistance, using a specific topology of a neural network. In this paper, we demonstrate that the amino acid ener-gies are good features to represent the HIV genotype. In addi-tion, it was shown that Bidirectional Recurrent Neural Networks can be used as an efficient classification method for this prob-lem. The prediction performance that was obtained was greater than or at least comparable to results obtained previously. The accuracies vary between 81.3% and 94.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sevin, A.D., DeGruttola, V., Nijhuis, M., Schapiro, J.M., Foulkes, A.S., Para, M.F., Boucher, C.A.B.: Methods for investigation of the relationship between drug-susceptibility phenotype and human immunodeficiency virus type 1 genotype with applications to aids clinical trials group 333. Journal Of Infectious Diseases 182(1), 59–67 (2000)

    Article  Google Scholar 

  2. Scmidt, B., Walter, H., Moschik, B.: Simple algorithm derived from ageno-/phenotypic database to predict HIV-1 protease inhibitor resistance. AIDS 14, 1731–1738 (2000)

    Article  Google Scholar 

  3. Wang, D.C., Larder, B.: Enhanced prediction of lopinavir resistance from genotype by use of artificial neural networks. Journal Of Infectious Diseases 188(5), 653–660 (2003)

    Article  Google Scholar 

  4. Beerenwinkel, N., Schmidt, B., Walter, H., Kaiser, R., Lengauer, T., Hoffmann, D., Korn, K., Selbig, J.: Diversity and complexity of hiv-1 drug resistance: A bioinformatics approach to predicting phenotype from genotype. PNAS 99(12), 8271–8276 (2002)

    Article  Google Scholar 

  5. James, R.: Predicting Human Immunodeficiency Virus Type 1 Drug Resistance from Genotype Using Machine Learning. Msc thesis, University of Edinburgh (2004)

    Google Scholar 

  6. Rabinowitz, M., Myers, L., Banjevic, M., Chan, A., Sweetkind-Singer, J., Haberer, J., McCann, K., Wolkowicz, R.: Accurate prediction of hiv-1 drug response from the reverse transcriptase and protease amino acid sequences using sparse models created by convex optimization. Bioinformatics 22(5), 541–549 (2006)

    Article  Google Scholar 

  7. Cao, Z.W., Han, L.Y., Zheng, C.J., Ji, Z.L., Chen, X., Lin, H.H., Chen, Y.Z.: Computer prediction of drug resistance mutations in proteins. Drug Discovery Today 10(7), 521–529 (2005)

    Article  Google Scholar 

  8. Beerenwinkel, N., Daumer, M., Oette, M., Korn, K., Hoffmann, D., Kaiser, R., Lengauer, T., Selbig, J., Walter, H.: Geno2pheno: estimating phenotypic drug resistance from hiv-1 genotypes. Nucl. Acids Res. 31(13), 3850–3855 (2003)

    Article  Google Scholar 

  9. Miyazawa, S., Jernigan, R.L.: Protein stability for single substitution mutants and the extent of local compactness in the denatured state. Protein Eng. 7, 1209–1220 (1994)

    Article  Google Scholar 

  10. Miyazawa, S., Jernigan, R.L.: Residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J. Mol. Biol. 256, 623–644 (1996)

    Article  Google Scholar 

  11. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  12. Chang, C., Lin, C.: Libsvm (2001)

    Google Scholar 

  13. Rumelhart, D.E., Hinton, A.G.E., Williams, A.R.J.: Learning internal representations by error propagation. In: Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  14. Bonet Cruz, I., Díaz Sardiñas, A., Bello Pérez, R., Sardiñas Oliva, Y.: Learning optimization in a MLP neural network applied to OCR. In: Coello Coello, C.A., de Albornoz, Á., Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS (LNAI), vol. 2313, pp. 292–300. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Tsoi, A., Back, A.: Discrete time recurrent neural network architectures: A unifying review. Neurocomputing 15, 183–223 (1997)

    Article  MATH  Google Scholar 

  16. Baldi, P., Soren, B.: Bioinformatics: The Machine Learning Approach, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  17. Werbos, P.J.: Backpropagation through time: What it does and how to do it. Proceedings of the IEEE 78, 1550–1560 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira José R. Álvarez

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Bonet, I., García, M.M., Saeys, Y., Van de Peer, Y., Grau, R. (2007). Predicting Human Immunodeficiency Virus (HIV) Drug Resistance Using Recurrent Neural Networks. In: Mira, J., Álvarez, J.R. (eds) Bio-inspired Modeling of Cognitive Tasks. IWINAC 2007. Lecture Notes in Computer Science, vol 4527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73053-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73053-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73052-1

  • Online ISBN: 978-3-540-73053-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics