Advertisement

A Framework of Context-Aware Object Recognition for Smart Home

  • Xinguo Yu
  • Bin Xu
  • Weimin Huang
  • Boon Fong Chew
  • Junfeng Dai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4541)

Abstract

Services for smart home share a fundamental problem—object recognition, which is challenging because of complex background and appearance variation of object. In this paper we develop a framework of object recognition for smart home integrating SIFT (scale invariant feature transform) and context knowledge of home environment. The context knowledge includes the structure and settings of a smart home, knowledge of cameras, illumination, and location. We counteract sudden significant illumination change by trained support vector machine (SVM) and use the knowledge of home settings to define the region for multiple view registration of an object. Experiments show that the trained SVM can recognize and distinguish different illumination classes which significantly facilitate object recognition.

Keywords

Video Surveillance Smart Home Object Recognition  Context–aware Illumination Object Recognition Support Vector Machine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alferez, R., Wang, Y.-F.: Geometric and illumination invariants for object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21(6), pp. 505–536 (1996)Google Scholar
  2. 2.
    Abdel-Hakim, A.E., Farag, A.A., CSIFT,: A SIFT descriptor with color invariant characteristics. Computer Vision and Pattern Recognition 2, 1978–1983 (2006)Google Scholar
  3. 3.
    Gu, T., Pung, H.K., Zhang, D.Q.: A service-oriented middleware for building context-aware services. Journal of Network and Computer Applications 28(1), 1–18 (2005)CrossRefGoogle Scholar
  4. 4.
    Liu, Q., Sun, M., Sclabassi, R.J.: Illumination-invariant change detection model for patient monitoring video. In: 26th Annual Int’l Conf of Eng. in Medicine and Biology Society, vol. 3, pp. 1782–1785 (2004)Google Scholar
  5. 5.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  6. 6.
    Luo, R.C., Lin, S.Y., Su, K.L.: A multiagent multisensor based security system for intelligent building. IEEE conf on Multisensor Fusion and Intelligent Systems, pp. 2394–2399 (2003)Google Scholar
  7. 7.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  8. 8.
    Mester, R., Aach, T., Dümbgen, L.: Illumination-invariant change detection using a statistical colinearity. In: Radig, B., Florczyk, S. (eds.) Pattern Recognition. LNCS, vol. 2191, Springer, Heidelberg (2001)Google Scholar
  9. 9.
    Mihailidis, A., Carmichael, B., Boger, J.: The use of computer vision in an intelligent environment to support aging-in-place, safety, and independence in the home. IEEE Trans. Inf. Technol. Biomed. 8(3), 238–247 (2004)CrossRefGoogle Scholar
  10. 10.
    Peursum, P., West, G., Venkatesh, S.: Combining image regions and human activity for indirect object recognition in indoor wide-angle views. In: ICCV 2005, vol. 1, pp. 82–89 (2005)Google Scholar
  11. 11.
    Seinstra, F.J., Geusebroek, J.M.: Color-based object recognition on a grid. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, Springer, Heidelberg (2006)Google Scholar
  12. 12.
    Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. CVPR’99 (June 1999)Google Scholar
  13. 13.
    Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Trans. on Systems, Man, and Cybernetics SMC-8(6), 460–473 (1978)Google Scholar
  14. 14.
    Collobert, R., Bengio, S.: SVMTorch: Support vector machines for large-scale regression problems. Journal of Machine Learning Research 1, 143–160 (2001)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Torralba, A., Murphy, K.P., Freeman, W.T., Rubin, M.A: Context-based vision system for place and object recognition. In: ICCV 2003, vol. 1, pp. 273–280 (2003)Google Scholar
  16. 16.
    Strat, T.M., Fischler, M.A.: Context-based vision: recognizing objects using information from both 2D and 3D imagery. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(10), 1050–1065 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Xinguo Yu
    • 1
  • Bin Xu
    • 2
  • Weimin Huang
    • 1
  • Boon Fong Chew
    • 1
  • Junfeng Dai
    • 2
  1. 1.Institute for Infocomm Research, 21 Heng Mui Keng Terrace,119613Singapore
  2. 2.Department of Electrical and Computer Engineering, National University of Singapore,117543Singapore

Personalised recommendations