Skip to main content

A Minimal Pair in the Quotient Structure M/NCup

  • Conference paper
Computation and Logic in the Real World (CiE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4497))

Included in the following conference series:

Abstract

In this paper, we prove the existence of a minimal pair of c.e. degrees a and b such that both of them are cuppable, and no incomplete c.e. degree can cup both of them to 0′. As a consequence, [a] and [b] form a minimal pair in M/NCup, the quotient structure of the cappable degrees modulo noncuppable degrees. We also prove that the dual of Lempp’s conjecture is true.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambos-Spies, K., Jockusch Jr., C.G., Shore, R.A., Soare, R.I.: An algebraic decomposition of the recursively enumerable degrees and the coincidence of several degree classes with the promptly simple degrees. Trans. Amer. Math. Soc. 281, 109–128 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cooper, S.B.: Minimal pairs and high recursively enumerable degrees. J. Symbolic Logic 39, 655–660 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cooper, S.B.: On a theorem of C. E. M. Yates. Handwritten notes (1974)

    Google Scholar 

  4. Cooper, S.B.: Computability Theory, Chapman & Hall/CRC Mathematics, Boca Raton, FL, New York, London (2004)

    Google Scholar 

  5. Downey, R., Lempp, S.: There is no plus-capping degree. Arch. Math. Logic 33, 109–119 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fejer, P.A., Soare, R.I.: The plus-cupping theorem for the recursively enumerable degrees. In: Logic Year 1979–80: University of Connecticut, pp. 49–62 (1981)

    Google Scholar 

  7. Lachlan, A.H.: Lower bounds for pairs of recursively enumerable degrees. Proc. London Math. Soc. 16, 537–569 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lachlan, A.H.: Bounding minimal pairs. J. Symb. Logic 44, 626–642 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, A.: On a conjecture of Lempp. Arch. Math. Logic 39, 281–309 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, A., Wu, G., Yang, Y.: On the quotient structure of computably enumerable degrees modulo the noncuppable ideal. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 731–736. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Li, A., Wu, G., Yang, Y.: Embed the diamond lattice into R/NCup preserving 0 and 1. In preparation

    Google Scholar 

  12. Miller, D.: High recursively enumerable degrees and the anticupping property. In: Logic Year 1979–80: University of Connecticut, pp. 230–245 (1981)

    Google Scholar 

  13. Sacks, G.E.: On the degrees less than 0’. Ann. of Math. 77, 211–231 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sacks, G.E.: The recursively enumerable degrees are dense. Ann. of Math. 80, 300–312 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schwarz, S.: The quotient semilattice of the recursively enumerable degrees modulo the cappable degrees. Trans. Amer. Math. Soc. 283, 315–328 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shoenfield, J.R.: Applications of model theory to degrees of unsolvability. In: Addison, J.W., Henkin, L., Tarski, A. (eds.) The Theory of Models, Proceedings of the 1963 International Symposium at Berkeley. Studies in Logic and the Foundations of Mathematics, pp. 359–363. Holland Publishing, Amsterdam (1965)

    Google Scholar 

  17. Slaman, T.: Questions in recursion theory. In: Cooper, S.B., Slaman, T.A., Wainer, S.S. (eds.) Computability, enumerability, unsolvability. Directions in recursion theory. London Mathematical Society Lecture Note Series, vol. 224, pp. 333–347. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  18. Soare, R.I.: Recursively Enumerable Sets and Degrees. Perspective in Mathematical Logic, Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  19. Sui, Y., Zhang, Z.: The cupping theorem in R/ M. J. Symbolic Logic 64, 643–650 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yates, C.E.M.: A minimal pair of recursively enumerable degrees. J. Symbolic Logic 31, 159–168 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yates, C.E.M.: On the degrees of index sets. Trans. Amer. Math. Soc. 121, 309–328 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yi, X.: Extension of embeddings on the recursively enumerable degrees modulo the cappable degrees. In: Computability, enumerability, unsolvability, Directions in recursion theory (eds. Cooper, Slaman, Wainer), London Mathematical Society Lecture Note Series 224, pp. 313–331

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bie, R., Wu, G. (2007). A Minimal Pair in the Quotient Structure M/NCup . In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) Computation and Logic in the Real World. CiE 2007. Lecture Notes in Computer Science, vol 4497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73001-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73001-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73000-2

  • Online ISBN: 978-3-540-73001-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics