Skip to main content

Resource Restricted Computability Theoretic Learning: Illustrative Topics and Problems

  • Conference paper
Computation and Logic in the Real World (CiE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4497))

Included in the following conference series:

  • 1269 Accesses

Abstract

Computability theoretic learning theory (machine inductive inference) typically involves learning programs for languages or functions from a stream of complete data about them and, importantly, allows mind changes as to conjectured programs. This theory takes into account algorithmicity but typically does not take into account feasibility of computational resources. This paper provides some example results and problems for three ways this theory can be constrained by computational feasibility. Considered are: the learner has memory limitations, the learned programs are desired to be optimal, and there are feasibility constraints on obtaining each output program and on the number of mind changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambainis, A., Case, J., Jain, S., Suraj, M.: Parsimony hierarchies for inductive inference. Journal of Symbolic Logic 69, 287–328 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Ash, C., Knight, J.: Recursive structures and Eshov’s hierarchy. Mathematical Logic Quarterly 42, 461–468 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Baliga, G., Case, J., Merkle, W., Stephan, F., Wiehagen, W.: When unlearning helps, Journal submission (2007)

    Google Scholar 

  • Bārzdiņš, J.: Two theorems on the limiting synthesis of functions. Theory of Algorithms and Programs, Latvian State University, Riga. 210, 82–88 (1974)

    Google Scholar 

  • Bārzdiņš, J., Freivalds, R.: Prediction and limiting synthesis of recursively enumerable classes of functions. Latvijas Valsts Univ. Zinatn. Raksti 210, 101–111 (1974)

    Google Scholar 

  • Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM Journal on Computing 26, 1411–1473 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Carlucci, L., Case, J., Jain, S., Stephan, F.: Non U-shaped vacillatory and team learning. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp. 241–255. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Carlucci, L., Case, J., Jain, S., Stephan, F.: Memory-limited U-shaped learning. In: Lugosi, G., Simon, H. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 244–258. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Case, J.: The power of vacillation in language learning. SIAM Journal on Computing 28(6), 1941–1969 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Case, J., Chen, K., Jain, S., Merkle, W., Royer, J.: Generality’s price: Inescapable deficiencies in machine-learned programs. Annals of Pure. and Applied Logic 139, 303–326 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Case, J., Jain, S., Lange, S., Zeugmann, T.: Incremental concept learning for bounded data mining. Information and Computation 152, 74–110 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Case, J., Lynes, C.: Machine inductive inference and language identification. In: Nielsen, M., Schmidt, E.M. (eds.) Automata, Languages, and Programming. LNCS, vol. 140, pp. 107–115. Springer, Heidelberg (1982)

    Chapter  Google Scholar 

  • Case, J., Moelius, S.: U-shaped, iterative, and iterative-with-counter learning (2007) (Submitted)

    Google Scholar 

  • Case, J., Paddock, T., Kötzing, T.: Feasible iteration of feasible learning functionals, Work in progress (2007)

    Google Scholar 

  • Case, J., Smith, C.: Comparison of identification criteria for machine inductive inference. Theoretical Computer Science 25, 193–220 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge, MA (2001)

    MATH  Google Scholar 

  • Daley, R., Smith, C.: On the complexity of inductive inference. Information and Control 69, 12–40 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Downey, R., Fellows, M.: Parameterized Complexity. In: Monographs in Computer Science, Springer, Heidelberg (1998)

    Google Scholar 

  • Ershov, Y.: A hierarchy of sets, I. Algebra i Logika, 7(1):47–74, 1968. In Russian (English translation in Algebra and Logic, 7:25–43 1968) (1968)

    Google Scholar 

  • Ershov, Y.: A hierarchy of sets II. Algebra and Logic 7, 212–232 (1968)

    Article  MathSciNet  Google Scholar 

  • Freivalds, R., Smith, C.: On the role of procrastination in machine learning. Information and Computation 107(2), 237–271 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Fulk, M., Jain, S., Osherson, D.: Open problems in Systems That Learn. Journal of Computer and System Sciences 49(3), 589–604 (1994)

    Article  MathSciNet  Google Scholar 

  • Gold, E.: Language identification in the limit. Information and Control 10, 447–474 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  • Hartmanis, J., Stearns, R.: On the computational complexity of algorithms. Transactions of the American Mathematical Society 117, 285–306 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  • Hildebrand, F.: Introduction to Numerical Analysis. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  • Hopcroft, J., Ullman, J.: Introduction to Automata Theory Languages and Computation. Addison-Wesley Publishing Company, London, UK (1979)

    MATH  Google Scholar 

  • Irwin, R., Kapron, B., Royer, J.: On characterizations of the basic feasible functional, Part I. Journal of Functional Programming 11, 117–153 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Jain, S., Osherson, D., Royer, J., Sharma, A.: Systems that Learn: An Introduction to Learning Theory, 2nd edn. MIT Press, Cambridge, MA (1999)

    Google Scholar 

  • Jain, S., Sharma, A.: Elementary formal systems, intrinsic complexity, and procrastination. Information and Computation 132, 65–84 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Kapron, B., Cook, S.: A new characterization of type 2 feasibility. SIAM Journal on Computing 25, 117–132 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Kearns, M., Vazirani, U.: An Introduction to Computational Learning Theory. MIT Press, Cambridge, MA (1994)

    Google Scholar 

  • Kinber, E., Stephan, F.: Language learning from texts: Mind changes, limited memory and monotonicity. Information and Computation 123, 224–241 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Lange, S., Zeugmann, T.: Incremental learning from positive data. Journal of Computer and System Sciences 53, 88–103 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Marcus, G., Pinker, S., Ullman, M., Hollander, M., Rosen, T.J., Xu, F.: Overregularization in Language Acquisition. In: Monographs of the Society for Research in Child Development (Includes commentary by H. Clahsen), vol. 57(4), University of Chicago Press, Chicago (1992)

    Google Scholar 

  • Mehlhorn, K.: Polynomial and abstract subrecursive classes. Journal of Computer and System Sciences 12, 147–178 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Odifreddi, P.: Classical Recursion Theory, volume II. Elsivier, Amsterdam (1999)

    MATH  Google Scholar 

  • Plunkett, K., Marchman, V.: U-shaped learning and frequency effects in a multi-layered perceptron: implications for child language acquisition. Cognition 86(1), 43–102 (1991)

    Article  Google Scholar 

  • Reischuk, R., Zeugmann, T.: An average-case optimal one-variable pattern language learner. Journal of Computer and System Sciences (Special Issue for COLT’98) 60(2), 302–335 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw Hill, New York, 1967. Reprinted, MIT Press (1987)

    Google Scholar 

  • Royer, J., Case, J.: Subrecursive Programming Systems: Complexity and Succinctness. Research monograph in Progress in Theoretical Computer Science. Birkhäuser Boston (1994)

    Google Scholar 

  • Sipser, M.: Private communication (1978)

    Google Scholar 

  • Strauss, S., Stavy, R. (eds.): U-Shaped Behavioral Growth. Academic Press, NY (1982)

    Google Scholar 

  • Taatgen, N., Anderson, J.: Why do children learn to say broke? A model of learning the past tense without feedback. Cognition 86(2), 123–155 (2002)

    Article  Google Scholar 

  • Wiehagen, R.: Limes-erkennung rekursiver funktionen durch spezielle strategien. Electronische Informationverarbeitung und Kybernetik 12, 93–99 (1976)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Case, J. (2007). Resource Restricted Computability Theoretic Learning: Illustrative Topics and Problems. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) Computation and Logic in the Real World. CiE 2007. Lecture Notes in Computer Science, vol 4497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73001-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73001-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73000-2

  • Online ISBN: 978-3-540-73001-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics