Skip to main content

Robotic-Assisted Surgery: Low-Cost Options

  • Chapter

Abstract

Open surgery is based on the access to the treated organ via one large 5- to 30-cm incision dividing the skin and abdominal muscles or fascias. This large skin incision provides the surgeon and assistant(s) with a direct view of the anatomy, enabling the introduction of their hands and instruments. They can look down at their work with their heads and necks in a neutral position, using both hands, with natural hand-eye coordination (Fig. 6.1a). For delicate surgical actions, it is even possible to support the wrists by leaning on the patient’s body or on a specially developed armrest [7, 21, 33]. However, there are also some drawbacks, particularly in case of pelvic surgery:

- The light conditions might be suboptimal.

- The distance to the tissue/organ is relatively long (i.e., urethra).

- The view to the object might be hindered by bone (suprapubic spine).

- The view for the assistant might be suboptimal due to the narrow anatomical conditions.

- The position of the surgeon is ergonomically suboptimal (i.e., torsion of the body).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  •  1. Ahlering TE, Skarecky D, Lee D et al (2003) Successful transfer of open surgical skills to a laparoscopic environment using a robotic interface: initial experience with laparoscopic radical prostatectomy. J Urol 170:1738–1741

    Article  Google Scholar 

  •  2. Aiono S, Gilbert JM, Soin B et al (2002) Controlled trial for the introduction of a robotic-camera assistant (EndoAssist) for laparoscopic cholecystectomy. Surg Endosc 16:1267–1270

    Article  Google Scholar 

  •  3. Antiphone P, Hoznek A, Benyoussef A et al (2003) Complete solo laparoscopic radical prostatectomy: initial experience. Urology 61:724–728

    Article  Google Scholar 

  •  4. Baba S, Egawa S, Iwamura M (2001) A novel multi-degrees-of freedom needle holder: a preliminary experience in laparoscopic surgery. J Endourol 15:A142 (abstract no. V10-P7)

    Google Scholar 

  •  5. Birkett DH (2001) Electromechanical instruments for endoscopic surgery. Minim Invasive Ther Allied Technol 10:271–274

    Article  Google Scholar 

  •  6. Boer den KT, Bruijn M, Jaspers JEN et al (2002) Time-action analysis of instrument positioners in laparoscopic cholecystectomy; a multicenter prospective randomized trial. Surg Endosc 16:142–147

    Article  Google Scholar 

  •  7. Breedveld P, Stassen HG, Meijer DW et al (1999) Theoretical background and conceptual solution for depth perception and eye–hand coordination problems in laparoscopic surgery. Minim Invasive Ther Allied Technol 8:227–234

    Google Scholar 

  •  8. Buess GF, Arezzo A, Schurr MO et al (2000) A new remote-controlled endoscope positioning system for endoscopic solo surgery. Surg Endosc 14:417–418

    Article  Google Scholar 

  •  9. Cathelineau X, Rozet F, Vallancien G (2004) Robotic radical prostatectomy: the European experience. Urol Clin North Am 31:639–699

    Article  Google Scholar 

  • Cuschieri A (1995) Whither minimal access surgery: tribulations and expectations. Am J Surg 169:9–19

    Article  PubMed  CAS  Google Scholar 

  • CONDOR Medicaltechnik (2007) Endoboy. http://www.condor-med.de

    Google Scholar 

  • Falk V, McLoughlin J, Guthart G et al (1999) Dexterity enhancement in endoscopic surgery by a computer-controlled mechanical wrist. Minim Invasive Ther Allied Technol 8:235–242

    Google Scholar 

  • Frede T, Stock C, Renner C et al (1999) Geometry of laparoscopic suturing and knotting techniques. J Endourol 13:191–198

    PubMed  CAS  Google Scholar 

  • Frede T, Stock C, Rassweiler JJ et al (2000) Retroperitoneoscopic and laparoscopic suturing: tips and strategies for improving efficiency. J Endourol 14:905–913

    PubMed  CAS  Google Scholar 

  • Frede T, Erdogru T, Zukosky D et al (2005) Analysis of transferability and open surgical skills for performing laparoscopic radical prostatectomy – experience with 1000 patients. J Urol 174:673–678

    Article  PubMed  Google Scholar 

  • Frede T, Hammady A, Klein J et al (2007) The Radius Surgical System – a new device for complex minimally invasive procedures in urology. Eur Urol 51:1015–1022; discussion 1022

    Article  PubMed  Google Scholar 

  • Green PE, Piantanida TA, Hill JW et al (1991) Telepresence: dexterous procedures in a virtual operating field. Am Surg 57:192 (abstract)

    Google Scholar 

  • Guillonneau B, Cappèle O, Bosco J et al (2001) Robotic assisted laparoscopic pelvic lymph node dissection in humans. J Urol 165:1078

    Article  PubMed  CAS  Google Scholar 

  • Janetschek G, Rassweiler J (1996) Future outlook. In: Janetschek G, Rassweiler J, Griffith D (eds) Laparoscopic surgery in urology. Thieme, Stuttgart, pp 276–280

    Google Scholar 

  • Janetschek G, Bartsch G, Kavoussi LR (1998) Transcontinental interactive laparoscopic telesurgery between the United States and Europe. J Urol 160:1413–1415

    Article  PubMed  CAS  Google Scholar 

  • Jaspers JEN (2006) Simple tools for surgeons. Design and evaluation of mechanical alternatives for “robotic” instruments for minimally invasive surgery (thesis). Ridderprint, Ridderkerk, The Netherlands

    Google Scholar 

  • Jaspers JEN, Den Boer KT, Sjoerdsma W et al (2000) Design and feasibility of PASSIST, a passive instrument positioner. J Laparoendosc Surg 10:331–335

    Article  CAS  Google Scholar 

  • Jaspers JEN, Bentala M, Herder JL et al (2004) Mechanical manipulator for intuitive control of endoscopic instruments with seven degrees of freedom. Minim Invasive Ther Allied Technol 13:191–198

    Article  PubMed  Google Scholar 

  • Kavoussi LR, Moore RG, Adams JB et al (1995) Comparison of robotic versus human laparoscopic camera control. J Urol 154:2134–2136

    Article  PubMed  CAS  Google Scholar 

  • Dr. Keutterling MTC (2007) LapMan, Laparoscopic Manipulator. http://www.medsys.de

    Google Scholar 

  • Lirici MM, Papaspyropoulos V, Angelini L (1997) Telerobotics in medicine and surgery. Minim Invasive Ther Allied Technol 6:364–378

    Google Scholar 

  • Lotan Y, Cadeddu JA, Gettman MT (2004) The new economics of radical prostatectomy: cost comparison of open, laparoscopic and robot assisted techniques. J Urol 172:1431–1435

    Article  PubMed  Google Scholar 

  • Luke PP, Girvan AR, Al Omar M et al (2004) Laparoscopic robotic pyeloplasty using Zeus telesurgical system. Can J Urol 11:2396–2400

    PubMed  Google Scholar 

  • Marescaux J, Leroy J, Gagner M et al (2001) Transatlantic robot-assisted telesurgery. Nature 413:379–380

    Article  PubMed  CAS  Google Scholar 

  • Menon M, Shrivastava A, Tewari A et al (2002) Laparoscopic and robot assisted radical prostatectomy: establishment of a structured program and preliminary analysis of outcomes. J Urol 168:945–949

    Article  PubMed  Google Scholar 

  • Pietrabissa A, Scarcello E, Carobbi A et al (1994) Three dimensional versus two-dimensional video system for the trained endoscopic surgeon and the beginner. Endosc Surg 2:315–317

    CAS  Google Scholar 

  • Polet R, Donnez J (2004) Gynecologic laparoscopic surgery with a palm-controlled laparoscopic holder. J Am Gynecol Laparosc 11:73–78

    Article  Google Scholar 

  • Rassweiler J, Binder J, Frede T (2001) Robotic and telesurgery: will they change our future? Curr Opin Urol 11:309–320

    Article  PubMed  CAS  Google Scholar 

  • Rassweiler J, Frede T, Seemann O et al (2001) Telesurgical laparoscopic radical prostatectomy – initial experience. Eur Urol 40:75–83

    Article  PubMed  CAS  Google Scholar 

  • Rassweiler J, Frede T (2002) Robotics, telesurgery and telementoring – their position in modern urological laparoscopy. Arch Esp Urol 55:610–628

    PubMed  Google Scholar 

  • Rassweiler J, Safi KC, Subotic S et al (2005) Robotics and telesurgery – an update on their position in laparoscopic radical prostatectomy. Minim Invasive Ther 14:109–122

    Article  CAS  Google Scholar 

  • Reichenspurner H, Damiano R, Mack M et al (1999) Use of the voice-controlled surgical system ZEUS for endoscopic coronary bypass grafting. J Thorac Cardiovasc Surg 118:11–16

    Article  PubMed  CAS  Google Scholar 

  • Satava RM (1992) Robotics, telepresence and virtual reality: a critical analysis of the future of surgery. Minim Invasive Ther 1:357–363

    Google Scholar 

  • Schurr MO, Buess G, Rininsland H et al (1996) Artemis – Manipulatorsystem für die endoskopische Chirurgie. Endoskopie Heute 9:245–251

    Google Scholar 

  • Schurr MO, Arezzo A, Neisius B et al (1999) Trocar and instrument positioning system TISKA. An assist device for endoscopic solo surgery. Surg Endosc 13:528–531

    Article  PubMed  CAS  Google Scholar 

  • Schurr MO, Kunert W, Arezzo A et al (1999) The role and future of endoscopic imaging systems. Endoscopy 71:557–562

    Article  Google Scholar 

  • Schurr MO, Buess G, Schwarz K (2001) Robotics in endoscopic surgery: can mechanical manipulators provide a more simple solution for the problem of limited degrees of freedom? Minim Invasive Ther 10:289–293

    Article  Google Scholar 

  • Steers WD, Lebeau S, Cardella J et al (2004) Establishing a robotics program. Urol Clin North Am 31:73–780

    Article  Google Scholar 

  • TrueVision (2007) Microsurgery teaching system. http://www.truevisionsys.com

    Google Scholar 

  • Wagner AA, Varkarakis M, Link RE et al (2006) Comparison of surgical performance during laparoscopic radical prostatectomy of two robotic camera holders, EndoAssist and AESOP: a pilot study. Urology 68:70–74

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rassweiler, J., Goezen, A., Scheitlin, W., Teber, D., Frede, T. (2008). Robotic-Assisted Surgery: Low-Cost Options. In: Kumar, S., Marescaux, J. (eds) Telesurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72999-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72999-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72998-3

  • Online ISBN: 978-3-540-72999-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics