Skip to main content

Numerical Methods and Results in the FPU Problem

  • Chapter
The Fermi-Pasta-Ulam Problem

Part of the book series: Lecture Notes in Physics ((LNP,volume 728))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Bambusi and A. Ponno, On meta-stability in FPU, Comm. Math. Phys, 264, 539–561 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. G. Benettin, Time scale for energy equipartition in a two-dimensional FPU model, Chaos, 15, 015108, 10 (2005).

    MathSciNet  Google Scholar 

  3. G. Benettin and F. Fassó, From Hamiltonian perturbation theory to symplectic integrators and back, Proceedings of the NSF/CBMS Regional Conference on numerical analysis of Hamiltonian differential equations (Golden, CO, 1997), 29, 73–87 (1999).

    Google Scholar 

  4. G. Benettin, L. Galgani, A. Giorgilli and J.-M. Strelcyn, Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them, part 1: theory, Meccanica, 9–20 (1980).

    Google Scholar 

  5. G. Benettin, L. Galgani, A. Giorgilli and J.-M. Strelcyn, Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them, part 2: numerical applications, Meccanica, 21–30 (1980).

    Google Scholar 

  6. G. Benettin and A. Giorgilli, On the Hamiltonian interpolation of near-to-the-identity symplectic mappings with application to symplectic integration algorithms, J. Statist. Phys., 74, 1117–1143 (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. L. Berchialla, L. Galgani and A. Giorgilli, Localization of energy in FPU chains,Discrete Contin. Dyn. Syst., 11, 855–866 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  8. L. Berchialla, A. Giorgilli and S. Paleari, Exponentially long times to equipartition in the thermodynamic limit, Phys. Lett. A, 321, 167–172 (2004).

    Article  MATH  ADS  Google Scholar 

  9. P. Bocchieri, A. Scotti, B. Bearzi and A. Loinger, Anharmonic chain with Lennard-Jones interaction, Phys. Rev. A, 2, 2013–2019 (1970).

    Article  ADS  Google Scholar 

  10. L.A. Bunimovich, S.G. Dani, R.L. Dobrushin, M.V. Jakobson, I.P. Kornfeld, N.B. Maslova, Y.B. Pesin, Y.G. Sinai, J. Smillie, Y.M. Sukhov and A.M.Vershik, Dynamical systems, ergodic theory and applications, vol. 100 of Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, revised edition, 2000. Edited and with a preface by Sinai, Translated from the Russian, Mathematical Physics, I.

    Google Scholar 

  11. A. Carati, L. Galgani, A. Ponno and A. Giorgilli, The Fermi-Pasta-Ulam problem, Nuovo Cimento B (11), 117, 1017–1026 (2002).

    ADS  Google Scholar 

  12. L. Casetti, M. Cerruti-Sola, M. Pettini and E.G.D. Cohen, The Fermi–Pasta–Ulam problem revisited: stochasticity thresholds in nonlinear Hamiltonian systems, Phys. Rev. E (3), 55, 6566–6574 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  13. C. Cercignani, L. Galgani and A. Scotti, Phys. Lett. A, 38, 403 (1972).

    Article  ADS  Google Scholar 

  14. P. Cincotta, C. Giordano and C. Simó, Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits, Phys. D, 182, 151–178 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  15. J. De Luca, A. Lichtenberg and M.A. Lieberman, Time scale to ergodicity in the fermi-pasta-ulam system, Chaos 5, 283–297 (1995).

    Article  ADS  Google Scholar 

  16. J. De Luca, A. Lichtenberg and S. Ruffo, Energy transition and time scale to equipartition in the Fermi–Pasta–Ulam oscillator chain, Phys. Rev. E (3), 51, 2877–2884 (1995).

    Article  Google Scholar 

  17. J. De Luca, A. Lichtenberg and S. Ruffo, Finite times to equipartition in the thermodynamic limit, Phys. Rev. E (3), 60, 3781–3786 (1999).

    Article  Google Scholar 

  18. E. Fermi, J. Pasta and S. Ulam, Studies of nonlinear problems, in Collected papers (Notes and memories). Vol. II: United States, 1939–1954, 1955. Los Alamos document LA-1940.

    Google Scholar 

  19. M. Fouchard, E. Lega, C. Froeschlé and C. Froeschlé, On the relationship between fast Lyapunov indicator and periodic orbits for continuous flows, Celestial Mech. Dynam. Astronom., 83, 205–222, (2002). Modern celestial mechanics: from theory to applications (Rome, 2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. C. Froeschlé, M. Guzzo and E. Lega, Graphical evolution of the Arnold web: from order to chaos, Science, 289, 2108–2110 (2000).

    Article  ADS  Google Scholar 

  21. C. Froeschlé and E. Lega, On the structure of symplectic mappings. The fast Lyapunov indicator: a very sensitive tool, Celestial Mech. Dynam. Astronom., 78 (2000), 167–195 (2001). New developments in the dynamics of planetary systems (Badhofgastein, 2000).

    ADS  Google Scholar 

  22. C. Froeschlé, E. Lega and R. Gonczi, Fast Lyapunov indicators. Application to asteroidal motion, Celestial Mech. Dynam. Astronom., 67, 41–62 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. F. Fucito, F. Marchesoni, E. Marinari, G. Parisi, L. Peliti, S. Ruffo and A. Vulpiani, Approach to equilibrium in a chain of nonlinear oscillators, J. Physique, 43, 707–713 (1982).

    Article  MathSciNet  Google Scholar 

  24. L. Galgani, A. Giorgilli, A. Martinoli and S. Vanzini, On the problem of energy equipartition for large systems of the Fermi-Pasta-Ulam type: analytical and numerical estimates, Phys. D, 59, 334–348 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  25. L. Galgani and A. Scotti, Phys. Rev. Lett., 28, 1173 (1972).

    Article  ADS  Google Scholar 

  26. L. Galgani and A. Scotti, Recent progress in classical nonlinear dynamics, Riv. Nuovo Cimento (2), 2, 189–209 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Giorgilli, S. Paleari and T. Penati, Local chaotic behaviour in the FPU system,Discrete Contin. Dyn. Syst. Ser. B, 5, 991–1004 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Guzzo, E. Lega and C. Froeschlé, On the numerical detection of the effective stability of chaotic motions in quasi-integrable systems, Phys. D, 163, 1–25 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Guzzo, E. Lega and C. Froeschlé, First numerical evidence of global Arnold diffusion in quasi-integrable systems, Discrete Contin. Dyn. Syst. Ser. B, 5, 687–698 (2005).

    Article  MATH  Google Scholar 

  30. E. Hairer, Backward analysis of numerical integrators and symplectic methods, Ann. Numer. Math., 1, 107–132 (1994). Scientific computation and differential equations (Auckland, 1993).

    MATH  MathSciNet  Google Scholar 

  31. E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration, vol. 31 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2002. Structure-preserving algorithms for ordinary differential equations.

    Google Scholar 

  32. F.M. Izrailev and B.V. Chirikov, Stochasticity of the simplest dynamical model with divided phase space, Sov. Phys. Dokl., 11, 30 (1966).

    ADS  Google Scholar 

  33. H. Kantz, Vanishing stability thresholds in the thermodynamic limit of nonintegrable conservative systems, Phys. D, 39, 322–335 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Kantz, R. Livi and S. Ruffo, Equipartition thresholds in chains of anharmonic oscillators, J. Statis. Phys., 76, 627–643 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  35. E. Lega, M. Guzzo and C. Froeschlé, Detection of Arnold diffusion in Hamiltonian systems, Phys. D, 182, 179–187 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  36. V.I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obv sv c., 19, 179–210 (1968).

    MathSciNet  Google Scholar 

  37. S. Paleari and T. Penati, Relaxation time to equilibrium in Fermi–Pasta–Ulam system, in Symmetry and perturbation theory (Cala Gonone, 2004), World Science Publishing, River Edge, NJ, 2004, pp. 255–263.

    Google Scholar 

  38. S. Paleari and T. Penati, Equipartition times in a Fermi–Pasta–Ulam system, Discr. Contin. Dyn. Syst., (2005). Dynamical systems and differential equations (Pomona, CA, 2004).

    Google Scholar 

  39. M. Pettini and M. Landolfi, Relaxation properties and ergodicity breaking in nonlinear Hamiltonian dynamics, Phys. Rev. A (3), 41, 768–783 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  40. B. Rink, Symmetry and resonance in periodic FPU chains, Comm. Math. Phys. 218, 665–685 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. C. Skokos, Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits, J. Phys. A, 34, 10029–10043 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. C. Skokos, C. Antonopoulos, T.C. Bountis and M.N. Vrahatis, Detecting order and chaos in Hamiltonian systems by the SALI method, J. Phys. A, 37, 6269–6284 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  43. K. Ullmann, A. Lichtenberg and G. Corso, Energy equipartition starting from high-frequency modes in the Fermi–Pasta–Ulam β oscillator chain, Prhys. Rev. E (3), 61, 2471–2477 (2000).

    Article  ADS  Google Scholar 

  44. L. Verlet, Computer “experiments” on classical fluids. I.Thermodynamical properties of Lennard-Jones molecules, Phys. Rev., 159, 98–103 (1967).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paleari, S., Penati, T. (2007). Numerical Methods and Results in the FPU Problem. In: Gallavotti, G. (eds) The Fermi-Pasta-Ulam Problem. Lecture Notes in Physics, vol 728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72995-2_7

Download citation

Publish with us

Policies and ethics