Skip to main content

Gas Phase Synthesis of Nanopowders

  • Chapter

The aim of gas phase synthesis is to achieve the condensation of nanopowders with maximal specific surface area (see below for the definition), or in other words, to obtain nanoparticles that are not connected by strong chemical bonds (intergrain regions called grain boundaries; see, for example, the discussion of mechanical grinding in Chap. 19). When the contact region is partial, it is called a neck or bridge, a term taken from the field of sintering (see Chap. 21).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Champion et al.: Materials Science Forum 426-432, 2411-2416 (2003)

    Article  Google Scholar 

  2. http://www.ipm.virginia.edu/research/posters/djs8pweb1/atomizer.htm

  3. J. Charpin, F. Rasneur: Mesure des surfaces spécifiques, Techniques de l’Ingénieur, 11-1997, Vol. PE2, PE 1045

    Google Scholar 

  4. R.M. German: Powder Metallurgy Science, ed. by Metal Powder Industries Federation, Princeton, New Jersey (1984) p. 77

    Google Scholar 

  5. E.R. Buckle, P. Tsakiropoulos, K.C. Pointon: International Metals Reviews 31, 258 (1986)

    Google Scholar 

  6. R.C. Flagan, J.H. Seinfeld: Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, New Jersey (1988) Chap. 5 Aerosols, pp. 290-356

    Google Scholar 

  7. R.S. Bradley: Quarterly Reviews 5, 315 (1951)

    Article  Google Scholar 

  8. E.R. Buckle: Trans. Faraday Soc. 65, 1267 (1969)

    Google Scholar 

  9. D.W. Oxtoby: J. Phys.: Condensed Matter 4, 7627 (1992)

    Article  ADS  Google Scholar 

  10. C.G. Granqvist, R.A. Buhrman: J. Appl. Phys. 47, No. 5, 2200-2219 (1976)

    Article  ADS  Google Scholar 

  11. R. Flagan, M. Lunden: Mat. Sci. Eng. A204, 113-124 (1995)

    Google Scholar 

  12. K. Kimura: Bull. Chem. Soc. Jpn. 60, 3093-3097 (1987)

    Article  Google Scholar 

  13. R.R. Irani, C.F. Callis: Particle Size: Measurement, Interpretation and Application, Wiley, New York (1963) Chap. 4

    Google Scholar 

  14. R.B. Bird, W.E. Stewart, E.N. Lightfoot: Transport Phenomena, Wiley, New York (1960)

    Google Scholar 

  15. R.C. Flagan, J.H. Seinfeld: Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, New Jersey (1988) Chap. 5 Aerosols, pp. 310-311

    Google Scholar 

  16. C. Kaito: Jap. J. of Appl. Phys. 17, 601 (1978)

    Article  ADS  Google Scholar 

  17. J. Bigot, A.G. Goursat, G. Vernet, J.F. Rimbert, J. Foulard, T. Sarle: Patent (France) No. Z8307414 (1983)

    Google Scholar 

  18. C. Duhamel: Third year dissertation, Ecole Nationale Supérieure de Chimie de Paris, CECM-CNRS, Vitry, France (2002)

    Google Scholar 

  19. Y. Champion, J-L Bonnentien, C. Langlois, C. Duhamel, J. Moulin, F. Mazaleyrat, P. Bayle, M.J. Hytch: Materials Science Forum 426-432, 2411-2416 (2003)

    Article  Google Scholar 

  20. Y. Champion, J. Bigot: Scripta Materialia 35, No. 4, 517-522 (1996)

    Article  Google Scholar 

  21. Y. Champion, J. Bigot: Nanostructured Materials 10, No. 7, 1097-1110 (1998)

    Article  Google Scholar 

  22. M. Umemoto, M. Udaka, K. Kawasaki, X.D. Liu: J. Mater. Res. 13, 1511-1516 (1998)

    Article  ADS  Google Scholar 

  23. Y. Moriysohi, M. Futaki, S. Komatsu, T. Ishigaki: J. Mater. Sci. Lett. 16, 347-349 (1997)

    Article  Google Scholar 

  24. W.R. Cannon, S.C. Danforth, J.H. Flint, J.S. Haggerty, R.A. Marra: J. American Ceramic Soc. 65 (7), 324-331 (1982)

    Article  Google Scholar 

  25. R. Dez et al.: J. of the European Ceramic Soc. 22, 2969-2979 (2002)

    Article  Google Scholar 

  26. X.-X. Bi: J. Mater. Research 8, No. 7, 1666-1674 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Champion, Y. (2008). Gas Phase Synthesis of Nanopowders. In: Bréchignac, C., Houdy, P., Lahmani, M. (eds) Nanomaterials and Nanochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72993-8_16

Download citation

Publish with us

Policies and ethics