Skip to main content

Chaotic Di?usion of Asteroids

  • Chapter
Topics in Gravitational Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 729))

Abstract

A large fraction (> 30%) of the numbered main-belt asteroids follow chaotic orbits, mainly associated to high-order mean motion resonances (MMRs) either of two-body (asteroid–Jupiter) or three-body type (asteroid–Jupiter–Saturn or Mars). These resonances form a dense network of thin chaotic layers throughout the asteroid belt, where small-amplitude variations in the proper elements of asteroids accumulate slowly over time. This effect is commonly referred to as chaotic diffusion. In this chapter we review recent results on speci?c asteroid groups, whose evolution is governed by an interplay between chaotic di?usion and radial migration, induced by subttle non-gravitational e?ects. In particular, we show how chaotic diffusion leads to the slow dispersion of the Trojan swarms and how long-lived resonant populations of individualy unstable asteroids can be formed and sustained in steady state. Furthermore, we show how simple models of chaotic di?usion can be used to estimate the age of asteroid families. In the second part of this chapter, we review di?erent analytic approaches to the problem of chaotic di?usion in MMRs. The domain of validity of each model is discussed, and a comparison between analytical and numerical results is made. We show that, in the absense of ‘fast’ transport routes, related to secular phenomena, chaotic di?usion in the asteroid belt has a characteristic time-scale of ~ 1 Gy, i.e. the time needed for an asteroid to di?use away from the main belt is of the same order as the age of the solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bottke, W. F., Vokrouhlicky, D., Broz, M., et al., 2001. Science 294, 1693.

    Article  ADS  Google Scholar 

  2. Brož, M., Vokrouhlicky, D., Roig, F., et al., 2005, Month. Not. Royal Astron. Soc. 359, 1437.

    Google Scholar 

  3. Bruhwiler, D. L. and Cary, J. R., 1989. Physica D 40, 265.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Chirikov, B. V., 1979, Phys. Rep. 52, 263.

    Article  ADS  MathSciNet  Google Scholar 

  5. Contopoulos, G., Efthymiopoulos, C., and Voglis, N., 1999, The form and significance of dynamical spectra. In Dvorak, R., Haupt, H.F., and Wodnar, K. (eds), Modern Astrometry and Astrodynamics, Proceedings of the International Conference honoring Heinrich Eichborn Held at Vienna observatory, Austria, 25–26 May 1998, p. 171.

    Google Scholar 

  6. Dermott, S. F., Kehoe, T. J. T., Durda, D. D., et al., 2002, Recent rubble-pile origin of asteroidal solar system dust bands and asteroidal interplanetary dust particles. In Warmbein, B. (ed.), Proceedings of Asteroids, Comets, Meteors, ACM, ESA-SP-500, Noordwijk, pp. 319–322.

    Google Scholar 

  7. Dvorak, R., Contopoulos, G., Efthymiopoulos, C., et al., 1998. Plan. Space Sci. 46, 1567.

    Article  ADS  Google Scholar 

  8. Efthymiopoulos, C., Contopoulos, G., Voglis, N., et al., 1997. J. Phys. A 30, 8167.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Farinella P. and Vokrouhlicky, D., 1999. Science 283, 1507.

    Article  ADS  Google Scholar 

  10. Farley, K. A., Vokrouhlicky, D., Bottke, W. F., et al., 2006. Nature 439, 295.

    Article  ADS  Google Scholar 

  11. Ferraz-Mello, S., Michtchenko, T. A., Nesvorny, D., et al., 1998. Plan. Space Sci. 46, 1425.

    Article  ADS  Google Scholar 

  12. Gladman, B., Migliorini, F., Morbidelli, A. et al., 1997. Science 277, 197.

    Article  ADS  Google Scholar 

  13. Gomes, R., Levison, H. F., Tsiganis, K., et al., 2005. Nature 435, 466.

    Article  ADS  Google Scholar 

  14. Hadjidemetriou, J. D., 1993. Celest. Mech. Dyn. Astron. 56, 563.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Hadjidemetriou, J. D., 1993. Celest. Mech. Dyn. Astron. 56, 201.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Henrard, J. and Caranicolas, N., 1990, Celest. Mech. Dyn. Astron. 47, 99.

    Article  ADS  MathSciNet  Google Scholar 

  17. Henrard, J. and Sato, M., 1990. Celest. Mech. Dyn. Astron. 47, 391.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Hirayama, K., 1918. Astron. J. 31, 185.

    Article  ADS  Google Scholar 

  19. Holman, M. J. and Murray, N. W., 1996. Astron. J. 112, 1278.

    Article  ADS  Google Scholar 

  20. Klafter, J. et al.: Levy Description of Anomalus Diffusion in Dynamical Systems, Lect. Notes Phys. 450, 196–215. Springer, Heidelberg (1995).

    Google Scholar 

  21. Knezevic, Z., Lemaitre, A., and Milani, A., 2002, The determination of asteroid proper elements. In Bottke, W. F., Cellino, A., Paolicchi, P., and Binzel, R.P. (eds), Asteroids III, University of Arizona Press, Tucson, pp. 603–612.

    Google Scholar 

  22. Levison, H., Shoemaker, E. M., and Shoemaker, C. S., 1997, Nature 385, 42.

    Article  ADS  Google Scholar 

  23. Lichtenberg, A. J. and Lieberman, M. A., 1983. Regular and Stochastic Motion, Springer-Verlag, New York.

    MATH  Google Scholar 

  24. Marzari F., Farinella, P., and Davis, D. R., 1999. Icarus 142, 63.

    Article  ADS  Google Scholar 

  25. Marzari, F., Scholl, H., Murray, C., et al., 2002, Origin and evolution of Trojan asteroids. In Bottke, W. F., Cellino, A., Paolicchi, P., and Binzel, R. P. (eds), Asteroids III, University of Arizona Press, Tucson, pp. 725–738.

    Google Scholar 

  26. Metzler, R. and Klafter, J., 2000. Phys. Rep. 339, 1.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Milani, A. and Knezevic, Z., 1990. Celest. Mech. Dyn. Astron. 49, 347.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Milani, A. and Nobili, A. M., 1992. Nature 357, 569.

    Google Scholar 

  29. Milani, A., 1993. Celest. Mech. Dyn. Astron. 57, 59.

    Google Scholar 

  30. Milani, A., 1993, The Dynamics of the Trojan Asteroids. In Milani, A., Di Martino, M., and Cellino, A. (eds), IAU Symp. 160: Asteroids, Comets, Meteors, Kluwer Academic Publishers, Dordrecht, pp. 159–174.

    Google Scholar 

  31. Milani, A. and Farinella, P., 1994. Nature 370, 40.

    Article  ADS  Google Scholar 

  32. Moons, M. and Morbidelli, A., 1995. Icarus 114, 33.

    Article  ADS  Google Scholar 

  33. Moons, M., 1997. Celest. Mech. Dyn. Astron. 65, 175.

    Google Scholar 

  34. Morbidelli, A. and Nesvorny, D., 1999. Icarus 139, 295.

    Article  ADS  Google Scholar 

  35. Morbidelli, A., 2002. Modern Celestial Mechanics: Aspects of Solar System Dynamics, Taylor & Francis, London.

    Google Scholar 

  36. Morbidelli, A., Levison, H. F., Tsiganis, K., et al., 2005. Nature 435, 462.

    Article  ADS  Google Scholar 

  37. Murray, C. D. and Dermott, S. F., 2002. Solar System Dynamics, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  38. Murray, N. and Holman, M., 1997. Astron. J. 114, 1246.

    Article  ADS  Google Scholar 

  39. Murray, N., Holman, M., and Potter, M., 1998. Astron. J. 116, 2583.

    Article  ADS  Google Scholar 

  40. Neishtadt, A. I., 1987. Prikl. Mat. Mekh. 51, 750.

    MathSciNet  Google Scholar 

  41. Neishtadt, A. I., 1987. Sov. Phys. Dokl. 32, 47.

    MathSciNet  Google Scholar 

  42. Nesvorny, D. and Ferraz-Mello, S., 1997. Icarus 130, 247.

    Article  ADS  Google Scholar 

  43. Nesvorny, D. and Morbidelli, A., 1998. Astron. J. 116, 3029.

    Article  ADS  Google Scholar 

  44. Nesvorny, D. and Morbidelli, A., 1999. Celest. Mech. Dyn. Astron. 71, 243.

    Article  ADS  MathSciNet  Google Scholar 

  45. Nesvorny, D., Ferraz-Mello, S., Holman, M., et al., 2002, Regular and chaotic dynamics in mean-motion resonances: Implications for the structure and evolution of the asteroid belt. In Bottke, W. F., Cellino, A., Paolicchi, P., and Binzel, R. P. (eds), Asteroids III, University of Arizona Press, Tucson, pp. 379–394.

    Google Scholar 

  46. Nesvorny, D., Bottke, W. F., Dones, L., et al., 2002. Nature 417, 720.

    Article  ADS  Google Scholar 

  47. Nesvorny, D., Bottke, W. F., Levison, H. F., et al., 2003. Astrophys. J. 591, 486.

    Article  ADS  Google Scholar 

  48. Paolicchi, P., Dell’Oro, A., Cellino, A., et al., 2002, Fitting the mass distributions of Koronis family: New ideas and related physical constraints. In Warmbein, B. (ed.), Proceedings of Asteroids, Comets, Meteors, ACM, sESA-SP-500, Noordwijk, pp. 525–528.

    Google Scholar 

  49. Robutel, P., Gabern, F., and Jorba, A., 2005. Celest. Mech. Dyn. Astron. 92, 53.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  50. Robutel, P. and Gabern, F., 2006. Month. Not. Royal Astron. Soc. 372, 1463.

    Article  ADS  Google Scholar 

  51. Shlesinger, M. F., Zaslavsky, G. M., and Klafter, J., 1993. Nature 363, 31.

    Article  ADS  Google Scholar 

  52. Tsiganis, K., Varvoglis, H., and Hadjidemetriou, J. D., 2000. Icarus 146, 240.

    Article  ADS  Google Scholar 

  53. Tsiganis, K., Varvoglis, H., and Hadjidemetriou, J. D., 2002. Icarus 155, 454 (2002a).

    Article  ADS  Google Scholar 

  54. Tsiganis, K., Varvoglis, H., and Hadjidemetriou, J. D., 2002. Icarus 159, 284 (2002b).

    Google Scholar 

  55. Tsiganis, K., Varvoglis, H., and Morbidelli, A., 2003. Icarus 166, 131.

    Article  ADS  Google Scholar 

  56. Tsiganis, K., Varvoglis, H., and Dvorak, R., 2005. Celest. Mech. Dyn. Astron. 92, 71.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  57. Tsiganis, K., Gomes, R., Morbidelli, A., et al., 2005. Nature 435, 459.

    Article  ADS  Google Scholar 

  58. Tsiganis, K., Kneževi, Z., and Varvoglis, H., 2007. Icarus, 186, 484.

    Article  ADS  Google Scholar 

  59. Vokrouhlicky, D., Broz, M., Bottke, W. F., et al., 2005, Non-gravitational perturbations and evolution of the asteroid main belt. In Knež;evi;, Z. and Milani, A. (eds), Dynamics of Populations of Planetary Systems, Proceedings of IAU Colloquium No. 197,Cambridge University Press, pp. 145–156.

    Google Scholar 

  60. Wisdom, J., 1980. Astron. J. 85, 1122.

    Article  ADS  Google Scholar 

  61. Wisdom, J., 1983. Icarus 56, 51.

    Article  ADS  Google Scholar 

  62. Wisdom, J., 1985. Icarus 63, 272.

    Article  ADS  Google Scholar 

  63. Wyatt, M. C., 2005, The origin and evolution of dust belts. In Kneževiæ, Z. and Milani, A. (eds), Dynamics of Populations of Planetary Systems, Proceedings of IAU Colloquium No. 197, Cambridge University Press, pp. 383–392.

    Google Scholar 

  64. Zaslavsky, G. M., 1994. Physica D 76, 110.

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsiganis, K. (2007). Chaotic Di?usion of Asteroids. In: Benest, D., Froeschle, C., Lega, E. (eds) Topics in Gravitational Dynamics. Lecture Notes in Physics, vol 729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72984-6_5

Download citation

Publish with us

Policies and ethics