Skip to main content

Hidden Markov Models Training Using Population-based Metaheuristics

  • Chapter

Part of the book series: Natural Computing Series ((NCS))

Abstract

In this chapter, we consider the issue of Hidden Markov Model (HMM) training. First, HMMs are introduced and then we focus on the particular HMM training problem. We emphasize the difficulty of this problem and present various criteria that can be considered.Many different adaptations of metaheuristics have been used but, until now, few extensive comparisons have been performed for this problem. We propose to compare three population-based metaheuristics (genetic algorithm, ant algorithm and particle swarm optimization) with and without the help of a local optimizer. These algorithms make use of solutions that can be explored in three different kinds of search space (a constrained space, a discrete space and a vector space). We study these algorithms from both a theoretical and an experimental perspective: parameter settings are fully studied on a reduced set of data and the performances of algorithms are compared on different sets of real data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Cappé, Ten years of hmms, http://www.tsi.enst.fr/ cappe/docs/hmmbib.html (March 2001)

    Google Scholar 

  2. A. A. Markov, An example of statistical investigation in the text of “Eugene onyegin” illustrating coupling of “tests” in chains, in: Proceedings of Academic Scienctific St. Petersburg, VI, 1913:153–162

    Google Scholar 

  3. L. E. Baum, J. A. Eagon, An inequality with applications to statistical estimation for probabilistic functions of markov processes to a model for ecology, Bull American Mathematical Society 73 (1967):360–363

    Google Scholar 

  4. A. J. Viterbi, Error bounds for convolutionnal codes and asymptotically optimum decoding algorithm, IEEE Transactions on Information Theory 13 (1967):260–269

    Google Scholar 

  5. L. E. Baum, An inequality and associated maximisation technique in statistical estimation for probabilistic functions of markov processes, Inequalities 3 (1972):1–8

    Google Scholar 

  6. G. D. Forney Jr., The Viterbi algorithm, in: Proceedings of IEEE, Vol. 61, 1973:268–278

    Google Scholar 

  7. T. Brouard, M. Slimane, J. P. Asselin de Beauville, Modélisation des processus simultanés indépendants par chaînes de Markov cachées multidimensionnelles (CMC-MD/I), Tech. Rep. 200, Laboratoire d’Informatique, UniversitéFrançois-Rabelais de Tours (December 1997)

    Google Scholar 

  8. S. Fine, Y. Singer, N. Tishby, The hierarchical hidden markov model: Analysis and applications, Machine Learning 32 (1) (1998):41–62 citeseer.ist.psu.edu/fine98hierarchical.html

    Google Scholar 

  9. L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE 77 (2) (1989):257–286

    Google Scholar 

  10. S. Aupetit, Contributions aux modèles de Markov cachés: métaheuristiques d’apprentissage, nouveaux modèles et visualisation de dissimilarité, Thèse de doctorat, Laboratoire d’Informatique de l’UniversitéFrançois-Rabelais de Tours, Tours, France (30 November 2005)

    Google Scholar 

  11. H. Bourland, C. Wellekens, Links between Markov models and multiplayer perceptrons, IEEE Transactions on Pattern Analysis and Machine Inteligence 12 (10) (1990):1–4

    Google Scholar 

  12. A. Berchtold, The double chain Markov model, Communications in Statistics: Theory and Methods 28 (11) (1999):2569–2589.

    Google Scholar 

  13. S. R. Eddy, Profile hidden Markov models, Bioinformatics 14 (9) (1998):755–63

    Google Scholar 

  14. Y. Bengio, Markovian models for sequential data, Neural Computing Surveys 2 (1999):129–162

    Google Scholar 

  15. W. Pieczynski, Arbres de Markov Triplet et fusion de Dempster-Shafer, Comptes Rendus de l’Académie des Sciences – Mathématique 336 (10) (2003):869–872

    Google Scholar 

  16. S. Kapadia, Discriminative training of hidden Markov models, Ph.D. Thesis, Downing College, University of Cambridge (18 March 1998)

    Google Scholar 

  17. A. Ganapathiraju, Discriminative techniques in hidden Markov models, Course paper (1999) http://www.isip.msstate.edu/publications/courses/ece_7000_speech/lectures/1999/lecture_11/

    Google Scholar 

  18. M. Berthold, D. J. Hand (Eds), Intelligent Data Analysis: An Introduction, Springer-Verlag, 1998

    Google Scholar 

  19. R. Schluter, W. Macherey, S. Kanthak, H. Ney, L. Welling, Comparison of optimization methods for discriminative training criteria, in: EUROSPEECH ’97, 5th European Conference on Speech Communication and Technology, Rhodes, Greece, 1997:15–18

    Google Scholar 

  20. M. Giurgiu, Maximization of mutual information for training hidden markov models in speech recognition, in: 3rd COST #276 Workshop, Budapest, Hungary, 2002:96–101

    Google Scholar 

  21. K. Vertanen, An overview of discriminative training for speech recognition, Tech. Rep., University of Cambridge (2004)

    Google Scholar 

  22. A. Ljolje, Y. Ephraim, L. R. Rabiner, Estimation of hidden Markov model parameters by minimizing empirical error rate, in: IEEE International Conference on Acoustic, Speech, Signal Processing, Albuquerque, 1990. 709–712 http://ece.gmu.edu/∼yephraim/Papers/icassp 1990 mcehmm.pdf

    Google Scholar 

  23. L. Saul, M. Rahim, Maximum likelihood and minimum classification error factor analysis for automatic speech recognition, IEEE Transactions on Speech and Audio Processing 8 (2) (2000):115–125

    Google Scholar 

  24. B.-H. Juang, L. R. Rabiner, The segmental k-means algorithm for estimating parameters of hidden Markov models, IEEE Transactions on Acoustics, Speech and Signal Processing 38 (9) (1990):1639–1641

    Google Scholar 

  25. R. Dugad, U. B. Desai, A tutorial on hidden Markov models, Tech. Rep. SPANN-96.1, Indian Institute of Technology, Bombay, India (May 1996)

    Google Scholar 

  26. J. Dreo, A. Petrowski, P. Siarry, E. Taillard, Métaheuristiques pour l’optimisation difficile, Eyrolles, Paris, 2003

    Google Scholar 

  27. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimizing by simulated annealing, Science 220 (4598) (1983):671–680

    Google Scholar 

  28. F. Glover, Future paths for integer programming and links to artificial intelligence, Computers and Operations Research 13 (1986):533–549

    Google Scholar 

  29. F. Glover, Tabu search – part I, ORSA Journal on Computing 1 (3) (1989):190–206

    Google Scholar 

  30. F. Glover, Tabu search – part II, ORSA Journal on Computing 2 (1) (1989):4–32

    Google Scholar 

  31. A. Hertz, E. Taillard, D. de Werra, A Tutorial on tabu search, in: Proceedings of Giornate di Lavoro AIRO’95 (Enterprise Systems: Management of Technological and Organizational Changes, 1992:13–24

    Google Scholar 

  32. F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers, 1997

    Google Scholar 

  33. J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press: Ann Arbor, MI, 1975

    Google Scholar 

  34. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989

    Google Scholar 

  35. S. Bulaja, Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning, Tech. Rep. CMU-CS-94-163, Carnegie Mellon University (1994)

    Google Scholar 

  36. S. Bulaja, R. Caruana, Removing the genetics from the standard genetic algorithm, in: A. Prieditis, S. Russel (Eds.), The International Conference on Machine Learning (ML’95), Morgan Kaufman Publishers, San Mateo, CA, 1995:38–46

    Google Scholar 

  37. N. Monmarché, Algorithmes de fourmis artificielles: applications àla classification et àl’optimisation, Thèse de doctorat, Laboratoire d’Informatique de l’UniversitéFrançois-Rabelais de Tours (20 December 2000)

    Google Scholar 

  38. N. Monmarché, G. Venturini, M. Slimane, On how Pachycondyla apicalis ants suggest a new search algorithm, Future Generation Computer Systems 16 (8) (2000):937–946

    Google Scholar 

  39. J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Joint Conference on Neural Networks, Vol. 4, IEEE, 1995:1942–1948

    Google Scholar 

  40. M. Clerc, L’optimisation par essaims particulaires : versions paramétriques et adaptatives, Hermes Science - Lavoisier, Paris, 2005

    Google Scholar 

  41. D. B. Paul, Training of HMM recognizers by simulated annealing, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 1985:13–16

    Google Scholar 

  42. Y. Hamam, T. Al Ani, Simulated annealing approach for hidden Markov models, in: 4th WG-7.6 Working Conference on Optimization-Based Computer-Aided Modeling and Design, ESIEE, France, 1996

    Google Scholar 

  43. T.-Y. Chen, X.-D. Mei, J.-S. Pan, S.-H. Sun, Optimization of hmm by the tabu search algorithm., Journal Information Science and Engineering 20 (5) (2004):949–957

    Google Scholar 

  44. M. Slimane, T. Brouard, G. Venturini, J.-P. Asselin de Beauville, Apprentissage non-superviséd’images par hybridation génétique d’une chaîne de Markov cachée, Traitement du signal 16 (6) (1999):461–475

    Google Scholar 

  45. R. Thomsen, Evolving the topology of hidden Markov models using evolutionary algorithms, in: Proceedings of Parallel Problem Solving from Nature VII (PPSN-2002), 2002:861–870

    Google Scholar 

  46. B. Maxwell, S. Anderson, Training hidden markov models using population-based learning, in: W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, R. E. Smith (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’99), Vol. 1, Morgan Kaufmann, Orlando, Florida, USA, 1999, p. 944. http://citeseer.ist.psu.edu/maxwell99training.html

    Google Scholar 

  47. S. Aupetit, N. Monmarché, M. Slimane, S. Liardet, An exponential representation in the API algorithm for hidden Markov models training, in: Proceedings of the 7th International Conference on Artificial Evolution (EA’05), Lille, France, 2005, cD-Rom

    Google Scholar 

  48. T. K. Rasmussen, T. Krink, Improved hidden Markov model training for multiple sequence alignment by a particle swarm optimization – evolutionary algorithm hybrid, BioSystems 72 (2003):5–17

    Google Scholar 

  49. S. Aupetit, N. Monmarché, M. Slimane, Apprentissage de modèles de Markov cachés par essaim particulaire, in: J.-C. Billaut, C. Esswein (Eds.), ROADEF’05 : 6ème congrès de la SociétéFrançaise de Recherche Opérationnelle et d’Aide àla Décision, Vol. 1, Presses Universitaire François-Rabelais, Tours, France, 2005:375–391

    Google Scholar 

  50. F. Samaria, A. Harter, Parameterisation of a stochastic model for human face identification, in: IEEE workshop on Applications of Computer Vision, Florida, 1994

    Google Scholar 

  51. T.C. Design, Free Background Textures, Flowers, http://www.tcdesign.net/free_textures_flowers.htm , accessed junuary 2006 (January 2006)

    Google Scholar 

  52. Textures Unlimited, Black & white textures, http://www.geocities.com/texturesunlimited/blackwhite.html, accessed junuary 2006 (January 2006)

    Google Scholar 

  53. S. Agarwal, A. Awan, D. Roth, Learning to detect objects in images via a sparse, part-based representation, IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (11) (2004):1475–1490

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aupetit, S., Monmarché, N., Slimane, M. (2007). Hidden Markov Models Training Using Population-based Metaheuristics. In: Siarry, P., Michalewicz, Z. (eds) Advances in Metaheuristics for Hard Optimization. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72960-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72960-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72959-4

  • Online ISBN: 978-3-540-72960-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics