Skip to main content

Plasma Membrane Redox Systems: Lipid Rafts and Protein Assemblies

  • Chapter
Book cover Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 69))

Electron transport processes are mainly associated with photosynthesis and respiratory chain. Nowadays the occurrence and possible roles of electron transport systems in plant plasma membranes appear well established. Besides quinones, NAD(P)H dehydrogenases, and b-type cytochromes have been purified and characterized in detail. Members of the flavocytochrome b family have been identified by nucleotide sequence analysis in several plant species and shown to be involved in iron uptake and oxidative stress including biotic interactions, abiotic stress factors and plant development. Recent work supports not only the existence of microdomains (so-called lipid rafts) in plant plasma membranes but also the occurrence of redox systems therein. Furthermore participation of plasma membrane-bound redox enzymes in protein—protein interactions and high molecular mass protein assemblies has been suggested. For this reason it is the aim of this overview to summarize the current knowledge about plasma membranebound redox systems with a special focus on their possible structures and functions, their occurrence in lipid rafts and their participation in protein assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts B (1998) The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92:291–294.

    PubMed  CAS  Google Scholar 

  • Alexandersson E, Saalbach G, Larsson C, Kjellbom P (2004) Arabidopsis plasma membrane proteomics identifies components of transport, signal transduction and membrane trafficking. Plant Cell Physiol 45:1543–1556.

    PubMed  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341.

    PubMed  CAS  Google Scholar 

  • Amicucci E, Gaschler K, Ward JM (1999) NADPH oxidase genes from tomato (Lycopersicum esculentum) and Curlyleaf pondweed. Plant Biol 1:524–528.

    CAS  Google Scholar 

  • Aro EM, Suorsa A, Rokka A, Allahverdiyeva Y, Paakkarinen V, Saleem A, Battchikova N, Rintamäki E (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 56:347–356.

    PubMed  CAS  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase: a hydrogen peroxide–scavenging enzyme in plants. Physiol Plant 85:235–241.

    CAS  Google Scholar 

  • Asada K, Miyake C, Ogawa K, Hossain MA (1996) Microcompartmentation of ascorbate peroxidase and regeneration of ascorbate from ascorbate radical: its dual role in chloroplasts. In: Obinger C, Burner U, Ebermann R, Penel C, Greppin H (eds) Proceedings of the IV international symposium on plant peroxidases: biochemistry and physiology. University of Vienna/University of Geneva, pp 163–167.

    Google Scholar 

  • Asard H, Venken M Caubergs R, De Greef JA (1989) b-Type cytochromes in higher plant plasma membranes. Plant Physiol 90:1077–1083.

    PubMed  CAS  Google Scholar 

  • Asard H, Horemans N, Preger V, Trost P (1998) Plasma membrane b-type cytochromes. In: Asard H, Bérczi A, Caubergs RJ (eds) Plasma membrane redox systems and their role in biological stress and disease. Kluwer, Dordrecht, pp 1–31.

    Google Scholar 

  • Asard H. Kapila Y, Verelst W, Bérczi A (2001) Higher-plant plasma membrane cytochrome b-561 a protein in search of a function. Protoplasma 217:77–93.

    PubMed  CAS  Google Scholar 

  • Aseeva E, Ossenbühl F, Eichacker LA, Wanner G, Soll J, Vothknecht UC (2004) Complex formation of Vipp1 depends on its a-helical PspA-like domain. J Biol Chem 279:35535–35541.

    PubMed  CAS  Google Scholar 

  • Askerlund P (1990) Redox processes of plant plasma membranes. PhD thesis, University of Lund, Lund.

    Google Scholar 

  • Askerlund P, Larsson C, Widell S (1989) Cytochromes of plant plasma membranes. characterization by absorbance difference spectrophotometry and redox titration. Physiol Plant 76:123–134.

    CAS  Google Scholar 

  • Askerlund P, Laurent P, Nakagawa H, Kadar JC (1991) NADH-ferricyanide reductase of leaf plasma membranes. Partial purification and immunological relation to potato tuber microsomal NADH-ferricyanide reductase and spinach leaf NADH-nitrate reductase. Plant Physiol 95:6–13.

    PubMed  CAS  Google Scholar 

  • Babior BM, Lambeth JD, Nauseef W (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397:342–344.

    PubMed  CAS  Google Scholar 

  • Bagnaresi P, Basso B, Pupillo P (1997) The NADH-dependent Fe3+-chelate reductases of tomato roots. Planta 202:427–434.

    PubMed  CAS  Google Scholar 

  • Barr R, Pun RS, Crane FL, Brightman AO, Morré DJ (1992) Destruction of vitamin K1 of cultured carrot cells by ultraviolett radiation and its effect on plasma membrane electron transport reactions. Biochem Int 27:449–456.

    PubMed  CAS  Google Scholar 

  • Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Cloning and characterization of deoxymugineic acid synthase genes from Graminaceous plants. J Biol Chem 281:32395–32402.

    PubMed  CAS  Google Scholar 

  • Bauer P, Thiel T, Klatte M, Bereczky Z, Brumbarova T, Hell R, Grosse I (2004) Analysis of sequence, map position, and gene expression reveals conserved essential genes for iron uptake in Arabidopsis and tomato. Plant Physiol 136:4169–4183.

    PubMed  CAS  Google Scholar 

  • Bérczi A, Asard A (2003) Soluble proteins, an often overlooked contaminant in plasma membrane preparations. Trends Plant Sci 8:250–251.

    PubMed  Google Scholar 

  • Bérczi A, Horvat, G (2003) Lipid rafts in the plant plasma membranes? Acta Biol Szegediensis 47: 7–10.

    Google Scholar 

  • Bérczi A, Møller IM (1998) NADH-monodehydroascorbate oxidoreductase is one of the redox enzymes in spinach leaf plasma membranes. Plant Physiol 116:1029–1036.

    Google Scholar 

  • Bérczi A, Møller IM (2000) Redox enzymes in the plant plasma membrane and their possible roles. Plant Cell Environ 23:1287–1302.

    Google Scholar 

  • Bérczi A, Fredlund KM, Møller IM (1995) Purification and characterization of an NADH-hexacyanoferrate (III) reductase from spinach leaf plasma membrane. Arch Biochem Biophys 320:65–72.

    PubMed  Google Scholar 

  • Bérczi A, Getselen P van, Pupillo P (1998) NAD(P) H-utilizing flavo-enzymes in the plant plasma membrane. In: Asard H, Bérczi A, Caubergs RJ (eds) Plasma membrane redox systems and their role in biological stress and disease. Kluwer, Dordrecht, pp 33–67.

    Google Scholar 

  • Bérczi A, Lüthje S, Asard H (2001) b-Type cytochromes in plasma membranes of Phaseolus vulgaris hypocotyls, Arabidopsis thaliana leaves, and Zea mays roots. Protoplasma 217:50–55.

    PubMed  Google Scholar 

  • Bérczi A, Caubergs RJ, Asard H (2003) Partial purification and characterization ofan ascorbat-reducible b-type cytochrom from the plasma membrane of Arabidopsis thaliana leaves. Protoplasma 221:47–56.

    PubMed  Google Scholar 

  • Bereczky Z, Wang HY, Schubert V, GAnal M, Bauer P (2003) Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato. J Biol Chem 278:24697–24704.

    PubMed  CAS  Google Scholar 

  • Betts H, Morre I (2003) Plant cell polarity: the ins and outs of sterol transport. Curr Biol 13:R781–R783.

    PubMed  CAS  Google Scholar 

  • Bhat RA, Panstruga, R (2005) Lipid rafts in plants. Planta 223:5–19.

    PubMed  CAS  Google Scholar 

  • Bienfait F (1985) Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake. J Bioenerg Biomembr 17:73–83.

    PubMed  CAS  Google Scholar 

  • Bienfait F, Lüttge U (1988) On the function of two systems that can transfer electrons across the plasma membrane. Plant Physiol Biochem 26:665–671.

    CAS  Google Scholar 

  • Bohn M, Heinz E, Lüthje S (2001) Lipid composition and fluidity of plasma membranes isolated from corn (Zea mays L.) roots. Arch Biochem Biophys 387:35–40.

    PubMed  CAS  Google Scholar 

  • Bohn M, Lüthje S, Sperling P, Heinz E, Dörffling K (2006) Plasma membrane lipid alterations induced by cold acclimation and isothermal abscisic acid treatment of winter wheat seedlings differing in frost resistance. J Plant Physiol 164:146–156.

    PubMed  Google Scholar 

  • Borner GHH, Lilley KS, Stevens TJ, Dupree P (2003) Idenification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis. Plant Physiol 132:568–577.

    PubMed  CAS  Google Scholar 

  • Borner GHH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, MacAskill A, Napier JA, Beale MH, Lilley KS, Dupree P (2005) Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol 137:104–116.

    PubMed  CAS  Google Scholar 

  • Böttger M, Lüthen H (1986) Possible linkage between NADH-oxidation and proton secretion in Zea mays L. roots. J Exp Bot 37:666–675.

    Google Scholar 

  • Brightman AO, Barr R, Crane FL, Morre DJ (1988) Auxin-stimulated NADH oxidase purified from plasma membrane of soybean. Plant Physiol 86:1264–1269.

    PubMed  CAS  Google Scholar 

  • Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev 14:111–136.

    CAS  Google Scholar 

  • Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224.

    PubMed  CAS  Google Scholar 

  • Canfield LM, Davy LA, Thomas GL (1985) Anti-oxidant/pro-oxidant reactions of vitamin K. Biochemi Biophys Res Commun 128:211–219.

    CAS  Google Scholar 

  • Chaney RL, Brown JC, Tiffin LO (1972) Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol 50:208–213.

    PubMed  CAS  Google Scholar 

  • Chueh PJ, Morré DM, Penel C, DeHahn T, Morré DJ (1997) The hormone-responsive NADH oxidase of the plant plasma membrane has properties of a NADH:protein disulfide reductase. J Biol Chem 272:11221–11227.

    PubMed  CAS  Google Scholar 

  • Clouse SD (2002) Arabidopsis mutants reveal multiple roles for sterols in plant development. Plant Cell 14:1995–2000.

    PubMed  CAS  Google Scholar 

  • Colangelo E, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330.

    PubMed  CAS  Google Scholar 

  • Connolly EL, Guerinot ML (1998) Reduction and uptake of iron in plants. In: Asard H, Bérczi A, Caubergs R (eds) Plasma membrane redox systems and their role in biological stress and disease. Kluwer, Dordrecht, pp 179–192.

    Google Scholar 

  • Connolly EL, Campbell NH, Grotz N, Prichard CL, Guerinot ML (2003): Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol 133:1102–1110.

    PubMed  CAS  Google Scholar 

  • Córdoba-Pedregosa MC, González-Reyes JA, Serrano A, Villalba JM, Navas P, Córdoba F (1998) Plasmalemma-associated malate dehydrogenase activity in onion root cells. Protoplasma 205:29–36.

    Google Scholar 

  • Cowan DSC, Cooke DT, Clarkson DT, Hall JL (1993) Lipid and sterol composition of plasma membranes isolated from stele and cortex of maize roots. J Exp Bot 44:991–994.

    CAS  Google Scholar 

  • Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206.

    PubMed  CAS  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe (III) uptake. Nature 409:346–349.

    PubMed  CAS  Google Scholar 

  • Davey MS, Suggett DJ, Geider RJ, Taylor AR (2003) Phytoplankton plasma membrane redox activity: effect of iron limitation and interaction with photosynthesis. J Phycol 39:1132–1144.

    CAS  Google Scholar 

  • De Kruijff B (1997) Lipids beyond the bilayer. Nature 386:129–130.

    PubMed  Google Scholar 

  • Degroote S, Wolthoorn J, Meer G van (2004) The cell biology of glycosphingolipids. Semin Cell Dev Biol 15:375–387.

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321.

    PubMed  CAS  Google Scholar 

  • Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004a) ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells. J Exp Bot 55:205–212.

    PubMed  CAS  Google Scholar 

  • Desikan R, Cheung MK, Clarke A, Golding S, Sagi M, Fluhr R, Rock C, Hancock J, Neill S (2004b) Funct Plant Biol 31:913–920.

    CAS  Google Scholar 

  • Döring O, Lüthje S (1996) Molecular components and biochemistry of electron transport in plant plasma membranes. Mol Membr Biol 13:127–142.

    PubMed  Google Scholar 

  • Döring O, Lüthje S, Böttger M (1998a) To be or not to be–a question of plasma membrane redox? Prog Bot 59:328–354.

    Google Scholar 

  • Döring O, Böttger M, Lüthje S (1998b) The constitutive electron transport system in plant plasma membranes: a role in defense against oxidative stress in the apoplast and within the plasma membrane?–A hypothesis. In: Noga G, Schmitz M (eds) Antioxidants in higher plants: biosynthesis, characteristics, actions and specific functions in stress defense.Shaker, Aachen, pp 19–30.

    Google Scholar 

  • Dudkina NV, Heinemeyer J, Sunderhaus S, Boekema EJ, Braun HP (2006) Respiratory chain super complexes in the plant mitochondrial membrane. Trends Plant Sci 11:232–240.

    PubMed  CAS  Google Scholar 

  • Durrett TP, Connolly EL, Rogers EE (2006) Arabidopsis cpFtsY mutants exhibit pleiotropic defects including an inability to increase iron deficiency-inducible root Fe(III) chelate reductase activity. Plant J 47:467–479.

    PubMed  CAS  Google Scholar 

  • Eckhardt U, Mas Marques A, Buckhout TJ (2001) Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Mol Biol 45:437–448.

    PubMed  CAS  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93:5624–5628.

    PubMed  CAS  Google Scholar 

  • Eisenhaber B, Wildpaner M, Schultz CJ, Borner GHH, Dupree P, Eisenhaber F (2003) Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice. Plant Physiol 133:1691–1701.

    PubMed  CAS  Google Scholar 

  • Elortza F, Nühse TS, Foster LJ, Stensballe A, Peck SC, Jensen ON (2003) Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins. Mol Cell Proteomics 2:1261–1270.

    PubMed  CAS  Google Scholar 

  • Elortza F, Mohammed S, Bunkenborg J, Foster LJ, Nühse TS, Brodbeck U, Peck SC, Jensen ON (2006) Modification-specific proteomics of plasma membrane proteins: Identification and characterization of glycosylphosphatidylinositol-anchored proteins released upon phospholipse D treatment. J Proteomics Res 5:935–943.

    CAS  Google Scholar 

  • Finegold AA, Shatwell KP, et al (1996) Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J Biol Chem 271:31021–31024.

    PubMed  CAS  Google Scholar 

  • Fiorentini D, Cipilline M, Galli MC, Landi L (1997). Antioxidant activity of reduced menadione in solvent solution and in model membranes. Free Radical Res 26:419–429.

    CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Medema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446.

    PubMed  CAS  Google Scholar 

  • Gevhev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17–20.

    Google Scholar 

  • Grandmougin A, Bouvier-Nave P, Ullmann P, Benveniste P, Hartmann MA (1989) Plant Physiol 90:591–597.

    PubMed  CAS  Google Scholar 

  • Griesen D, Su D, Bérczi A, Asard H (2004) Localization of an ascorbate-reducible cytochrome b561 in the plant tonoplast. Plant Physiol 134: 726–734.

    PubMed  CAS  Google Scholar 

  • Groom QJ, Torres MA, Fordham Skelton AP, Hammond-Kosack KE, Robinson NJ, Jones JDG (1996) RbohA, a rice homoloug of the mammalian gp91phox respiratory burst oxidase gene. Plant J 10:515–522.

    PubMed  CAS  Google Scholar 

  • Grotz N, Guerinot ML (2006): Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763:595–608.

    PubMed  CAS  Google Scholar 

  • Grün S, Lindermayr C, Sell S, Durner J (2006) Nitric oxide and gene regulation in plants. J Exp Bot 57:507–516.

    PubMed  Google Scholar 

  • Hadži-Taškovicˇ Šukalovic´ V, Vuletic´ M, Ignjatovic´-Micic´ D, Vucˇinic´ Z (1999) Plasma membrane-bound malate dehydrogenase activity in maize roots. Protoplasma 207:203–212.

    Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613.

    PubMed  CAS  Google Scholar 

  • Hanss B, Leal-Pinto E, Teixeira A, Christian RE, Shabanowitz J, Hunt DF, Klotman PE (2002) Cytosolic malate dehydrogenase confers selectivity of the nucleic acid-conducting channel. Proc Natl Acad Sci USA 99:1707–1712.

    PubMed  CAS  Google Scholar 

  • Hartmann, MA (1998). Plant sterols and the membrane environment. Trends Plant Sci 3:170–175.

    Google Scholar 

  • Helms V (2002) Attraction within the membrane. Forces behind transmembrane protein folding and supramolecular complex assembly. EMBO Rep 3:1133–1138.

    PubMed  CAS  Google Scholar 

  • Henderson LM (2001) NADPH oxidase subunit gp91phox: a proton pathway. Protoplasma 217:37–42.

    PubMed  CAS  Google Scholar 

  • Herbik A, Koch G, Mock HP, Dashkow D, Czihal A, Thielmann J, Stephan UW, Baumlein H (1999) Isolation, characterization and cDNA cloning of nicotianamine synthase from barley. A key enzyme for iron homeostasis in plants. Eur J Biochem 265:231–239.

    PubMed  CAS  Google Scholar 

  • Herve C, Tonon T, Collen J, Corre E, Boyen C (2006) NADPH oxidase in eukaryotes: red algae provide new hints! Curr Genet 49:190–204.

    PubMed  CAS  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–480.

    PubMed  CAS  Google Scholar 

  • Higuchi K, Watanabe S, Takahashi M, Kawasaki S, Nakanishi H, Nishizawa NK, Mori S (2001) Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. Plant J 25:159–167.

    PubMed  CAS  Google Scholar 

  • Holden MJ, Luster DG, Chaney RL, Buckhout TJ, Robinson C (1991) Fe3+-chelate reductase activity of plasma membranes isolated from tomato (Lycopersicon esculentum Mill.) roots. Plant Physiol 97:537–544.

    PubMed  CAS  Google Scholar 

  • Holden MJ, Crimmins TJ, Chaney RL (1995) Cu2+ reduction by tomato root plasma membrane vesicles. Plant Physiol 108:1093–1098.

    PubMed  CAS  Google Scholar 

  • Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5:263–267.

    PubMed  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335–346.

    PubMed  CAS  Google Scholar 

  • Ishitsuka R, Sato SB, Kobayashi T (2005) Imaging lipid rafts. J Biochem 137:249–254.

    PubMed  CAS  Google Scholar 

  • Jalloul A, Montillet JL, Assigbetse K, Agnel JP, Delannoy E, Triantaphylides C, Daniel JF, Marmey P, Geiger JP, Nicole M (2002) Lipid peroxidation in cotton: Xanthomonas interactions and the role of lipoxygenases during the hypersensitive reaction. Plant J 32:1–12.

    PubMed  CAS  Google Scholar 

  • Jänsch L, Kruft V, Schmitz UK, Braun H-P (1996) New insights into the composition, molecular mass and stoichiometry of the protein complexes of plant mitochondria. Plant J 9:357–368.

    PubMed  Google Scholar 

  • Jones G J, Palenik BP, Morel FMM (1987) Trace-metal reduction by phytoplankton–the role of plasmalemma redox enzymes. J Phycol 23:237–244.

    CAS  Google Scholar 

  • Kalén A, Norling B, Appelkvist EL, Dallner G (1987) Ubiquinone biosynthesis by the microsomal fraction from rat liver. Biochim Biophys Acta 926:70–78.

    PubMed  Google Scholar 

  • Kaplan J, McVey Ward D, Crisp RJ, Philpott CC (2006) Iron-dependent metabolic remodeling in S. cerevisiae. Biochim Biophys Acta 1763:646–651.

    PubMed  CAS  Google Scholar 

  • Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837.

    PubMed  CAS  Google Scholar 

  • Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255–266.

    PubMed  CAS  Google Scholar 

  • Kieselbach T, Bystedt M, Hynds P, Robinson C, Schroder WP (2000) A peroxidase homologue and novel plastocyanin located by proteomics to the Arabidopsis chloroplast thylakoid lumen. FEBS Lett 480:271–276.

    PubMed  CAS  Google Scholar 

  • Kimball RA, Saier MH Jr (2002) Voltage-gated H+ channels associated with human phagocyte superoxide-generating NADPH oxidases: sequence comparisons, structural predictions, and phylogenetic analyses. Mol Membr Biol 19:137–147.

    PubMed  CAS  Google Scholar 

  • Kjell J, Rasmusson AG, Larsson H, Widell S (2004) Protein complexes of the plant plasma membrane resolved by blue native PAGE. Physiol Plant 121:546–555.

    CAS  Google Scholar 

  • Kobayashi M, Kawakita K, Maeshima M, Doke N, Yoshioka H (2006) Subcellular localization of Strboh proteins and NADPH-dependent O2 -generating activity in potato tuber tissues. J Exp Bot 57:1373–1379.

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Nakanishi H, Takahashi M, Kawasaki S, Nishizawa NK, Mori S (2001) In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2c-deoxymugineic acid to mugineic acid in transgenic rice. Planta 212:864–871.

    PubMed  CAS  Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424.

    PubMed  CAS  Google Scholar 

  • Komenda J, Reisinger V, Müller BC, Dobáková M, Granvofel B, Eichacker LA (2004) Accumulation of the D2 protein is a key regulator step for assembly of the photosystem II reaction center complex in Synechocystis PCC 6803. J Biol Chem 279:48620–48629.

    PubMed  CAS  Google Scholar 

  • Kügler M, Jänsch L, Kruft V, Schmitz UK, Braun H-P (1997) Analysis of the chloroplast protein complexes by blue-native polyacrylamide gel electrophoresis (BN-PAGE). Photosynth Res 53:35–44.

    Google Scholar 

  • Kukavica B, Vucˇinic´ Ž, Vuletic´ M (2005) Superoxide dismutase, peroxidase, and germin-like protein activity in plasma membranes and apoplast of maize roots. Protoplasma 226:191–197.

    PubMed  CAS  Google Scholar 

  • Kunze M, Riedel J. Lange U, Hurwitz R, Tischner R (1997) Evidence for the presence of GPI-anchored PM-NR in leaves of Beta vulgaris and for PM-NR in barley leaves. Plant Physiol Biochem 35:507–512.

    CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhard N, Torres AM, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JL (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signalling in Arabidopsis. EMBO J 22:2623–2633.

    PubMed  CAS  Google Scholar 

  • Lagerholm BC, Weinreb GE, Jacobson K, Thompson NL (2005) Detetcting microdomains in intact cell membranes. Annu Rev Phys Chem 56:309–336.

    PubMed  CAS  Google Scholar 

  • Laloi C, Apel K, Danon A (2004) Reactive oxygen signalling: the latest news. Curr Opin Plant Biol 7:323–328.

    PubMed  CAS  Google Scholar 

  • Laloi M, Perret AM, Chatre L, Melser S, Cantrel , Vaultier MN, Zachowski A, Bathany K, Schmitter JM, Vallet M, Lessire R, Hartmann MA, Moreau P (2006) Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells. Plant Physiol 143:461–472.

    PubMed  Google Scholar 

  • Lambeth JD (2002) Nox/Duox family of nicotinamide adenine dinucleotide (phosphate oxidases. Curr Opin Hematol 9:11–17.

    PubMed  Google Scholar 

  • Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189.

    PubMed  CAS  Google Scholar 

  • Larsson C, Sommarin M, Widell S (1994) Isolation of highly purified plant plasma membranes and separation of inside-out and right-side-out vesicles. Methods Enzymol 228:451–469.

    CAS  Google Scholar 

  • Laskowski M, Dreher KA, Gehring MA, Abel S, Gensler AL, Sussex IM (2002) FQR1, a novel primary auxin-response gene, encodes a flavin mononucleotide-binding quinone reductase. Plant Physiol 128:578–590.

    PubMed  CAS  Google Scholar 

  • Lee AG (2000) Membrane lipids: it’s only a phase. Curr Biol 10:R377–R380.

    PubMed  CAS  Google Scholar 

  • Li L, Cheng X, Ling HQ (2004) Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato. Plant Mol Biol 54:125–136.

    PubMed  Google Scholar 

  • Lilley KS, Dupree P (2006) Methods of quantitative proteomics and their application to plant organelle characterization. J Exp Bot 57:1493–1500.

    PubMed  CAS  Google Scholar 

  • Lo Piero AR, Cultrone A, Monachello D, Petrone G (2003) Different kinetic and regulatory properties of soluble and membrane-bound nitrate reductases in tomato leaves. Plant Sci 165:139–145.

    CAS  Google Scholar 

  • Lochner K, Döring O, Böttger M (2003) Phylloquinone, what can we learn from plants? BioFactors 18:73–78.

    PubMed  CAS  Google Scholar 

  • Luster DG, Buckhout TJ (1989) Purification and identification of plasma membrane associated electron transport protein from maize (Zea mays L.) roots. Plant Physiol 91:1014–1019.

    PubMed  CAS  Google Scholar 

  • Lüthje S, Niecke M, Böttger M (1995) Iron and copper in plasma membranes of maize (Zea mays L.) roots investigated by proton induced X-ray emission (PIXE). Protoplasma 184:145–150.

    Google Scholar 

  • Lüthje S, Döring O, Heuer S, Lüthen H, Böttger M (1997) Oxidoreductases in plant plasma membranes (review). Biochim Biophys Acta 1331:81–102.

    PubMed  Google Scholar 

  • Lüthje S, Van Gestelen P, Córdoba-Pedregosa MC, González-Reyes JA, Asard H, Villalba JM, Böttger M (1998) Quinones in plant plasma membranes–a missing link? Protoplasma 205:43–51.

    Google Scholar 

  • Lüthje S, Böttger M, Döring O (2000) Are plants stacked neutrophiles? Pathogen-induced oxidative burst in plants and mammals in comparison. Prog Bot 61:187–222.

    Google Scholar 

  • Lüthje S, Böttger M, Döring O (2005) Proton channelling b-Type cytochromes in plant plasma membranes? Prog Bot 66:187–207.

    Google Scholar 

  • Lynch DV, Phinney AJ (1995) The transbilayer distribution of glucosylceramide in plant plasma membrane. In: Kader JC, Mazliak P (eds) Plant lipid metabolism. Kluwer, Dordrecht, pp 239–241.

    Google Scholar 

  • Maldonado MT, Price NM (2000) Nitrate regulation of Fe reduction and transport by Fe-limited Thalassiosira oceanica. Limnol Oceanogr 45:814–826.

    Article  CAS  Google Scholar 

  • Maldonado MT, Price NM (2001) Reduction and transport of organically bound iron by Thalassiosira oceanica (Bacillariophyceae). J Phycol 37:298–309.

    CAS  Google Scholar 

  • Marmagne A, Rouet MA, Ferro M, Rolland N, Alcon C, Joyard J, Garin J, Barbier-Brygoo H, Ephritikhine G (2004) Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome. Mol Cell Proteomics 3:675–691.

    PubMed  CAS  Google Scholar 

  • Marmagne A, Salvi D, Rolland N, Ephritikhine G, Joyard J, Barbier-Brygoo H (2006) Purification and fractionation of membranes for proteomic analyses. Methods Mol Biol 323:403–420.

    PubMed  CAS  Google Scholar 

  • Marschner H, Römheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9:695–713.

    CAS  Google Scholar 

  • Martin SW, Glover BJ, Davies JM (2005) Lipid microdomains–plant membranes get organized. Trends Plant Sci 10:263–265.

    PubMed  CAS  Google Scholar 

  • Martinoia E, Rentsch D (1994) Malate compartmentation: responses to a complex metabolism. Annu Rev Plant Physiol Plant Mol Biol 45:447–467.

    CAS  Google Scholar 

  • Masson F, Rossignol M (1995) Basic plasticity of protein expression in tobacco leaf plasma membrane. Plant J 8:77–85.

    CAS  Google Scholar 

  • Menckhoff M, Lüthje S (2004) Transmembrane electron transport in sealed and NAD(P) H-loaded right-side-out plasma membrane vesicles isolated from maize (Zea mays L.) roots. J Exp Bot 55:1343–1349.

    PubMed  CAS  Google Scholar 

  • Merchant SS, Allen MD, Kropat J, Moseley JL, Lpng JC, Tottey S, Terauchi AM (2006) Between rock and a hard place: trace element nutrition in Chlamydomonas. Biochim Biophys Acta 1763:578–594.

    PubMed  CAS  Google Scholar 

  • Meyer C, Stöhr C (2002) Nitrate reductase and nitrite reductase. In: Foyer C, Noctor G (eds) Photosynthetic nitrogen assimilation and associated carbon metabolism. Advances in photosynthesis. Kluwer, Dordrecht, pp 49–62.

    Google Scholar 

  • Mika A (2005) Biochemische Charakterisierung und bioinformatische Sequenzanalyse plasmamembrangebundener Peroxidasen aus Maiswurzeln (Zea mays L.). PhD thesis, University of Hamburg, Hamburg.

    Google Scholar 

  • Mika A, Lüthje S (2003) Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiol 132:1489–1498.

    PubMed  CAS  Google Scholar 

  • Mika A, Minibayava F, Beckett R, Lüthje S (2004) Possible functions of extracellular peroxidases in stress-induced generation and detoxification of active oxygen species. Phytochem Rev 3:173–193.

    CAS  Google Scholar 

  • Millar AA, Wrischer M, Kunst L (1998) Accumulation of very-long-chain fatty acids in membrane glycerolipids is associated with dramatic alterations in plant morphology. Plant Cell 11:1889–1902.

    Google Scholar 

  • Minarik P, Tomaskova N, Kollarova M, Antalik M (2002) Malate dehydrogenase–structure and function. Gen Physiol Biophys 21:257–265.

    PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498.

    PubMed  CAS  Google Scholar 

  • Mizuno D, Higuchi K, Sakamoto T, Nakanishi H, Mori S, Nishizawa NK (2003) Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status. Plant Physiol 132:1989–1997.

    PubMed  CAS  Google Scholar 

  • Mongrand S, Morel J, Laroche J, Claverol S, Carde JP, Hartmann MA, Bonneu M, Simon-Plas F (2004) Lipid rafts in higher plant cells. J Biol Chem 279:36277–36286.

    PubMed  CAS  Google Scholar 

  • Morel J, Claverol S, Mongrand S, Furt F, Fromentin J, Bessoule JJ, Blein JP, Simon-Plas F (2006) Proteomics of plant detergent-resistant membranes. Mol Cell Proteomics 5:1396–1411.

    PubMed  CAS  Google Scholar 

  • Mori S (1999) Iron acquisition by plants. Curr Opin Plant Biol 2:250–253.

    PubMed  CAS  Google Scholar 

  • Morré DJ (1998) NADH oxidase: a multifunctional ectoprotein of the eukaryotic cell surface. In: Asard H, Bérczi A, Caubergs RJ (eds) Plasma membrane redox systems and their role in biological stress and disease. Kluwer, Dordrecht, pp 121–156.

    Google Scholar 

  • Mukai K, Itho S, Morimoto H (1992) Stopped-flow kinetic study of vitamin E regeneration reaction with biological hydroquinones (reduced forms of ubiquinone, vitamin K and tocopherol quinone) in solution. J Biol Chem 267:22277–22281.

    PubMed  CAS  Google Scholar 

  • Mukai K, Morimoto H, Kikuchi S, Nagaoka S (1993) Kinetic study of free radical-scavenging action of biological hydroquinones (reduced forms of ubiquinone, vitamin K and tocopherol quinone) in solution. Biochim Biophys Acta 1157:313–317.

    PubMed  CAS  Google Scholar 

  • Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223:1178–1190.

    PubMed  CAS  Google Scholar 

  • Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T (2006) A specific transporter for iron (III)-phytosiderophore in barley roots. Plant J 46:563–572.

    PubMed  CAS  Google Scholar 

  • Møller IM, Askerlund P, Widell S (1991) Electron transport constituents in the plasma membrane. In: Crane FL, Morre DJ, Löw HE (eds) Oxidoreduction at the plasma membrane: relation to growth and transport. (Plants, vol 2). CRC, Boca Raton, pp 35–59.

    Google Scholar 

  • Nakanishi H, Yamaguchi H, Sasakuma T, Nishizawa NK, Mori S (2000) Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Mol Biol 44:199–207.

    PubMed  CAS  Google Scholar 

  • Nanasato Y, Akashi K, Yokota A (2005) Co-expression of cytochrome b561 and ascorbate oxidase in leaves of wild watermelon under drought and high light conditions. Plant Cell Physiol 46:1515–1524.

    PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hanckokc JT (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395.

    PubMed  CAS  Google Scholar 

  • Ohyashiki T, Yabunaka Y, Matsui K (1991) Antioxidant effect of vitamin K homologues on ascorbic acid/Fe2+-induced lipid peroxidation of lecithin liposomes. Chem Pharm Bull 39:976–979.

    PubMed  CAS  Google Scholar 

  • Ortiz A, Aranda FJ (1999) The influence of vitamin K1 on the structure and phase behaviour of model membrane systems. Biochim Biophys Acta 1418:206–220.

    PubMed  CAS  Google Scholar 

  • Paladino S, Sarnataro D, Pillich R, Tivodar S, Nitsch L, Zurzolo C (2004) Protein oligomerization modulated raft partitioning and apical sorting of GPI-anchored proteins. J Cell Biol 167:699–709.

    PubMed  CAS  Google Scholar 

  • Palmgren MG, Askerlund P, Fredrikson K, Widell S, Sommarin M, Larsson C (1990) Sealed inside-out and right-side-out plasma membrane vesicles. Plant Physiol 92:871–880.

    PubMed  CAS  Google Scholar 

  • Peskan T, Westermann M, Oelmüller R (2000) Identification of low-density Triton X-100-insoluble plasma membrane microdomains in higher plants. Eur J Biochem 267:6989–6995.

    PubMed  CAS  Google Scholar 

  • Philpott CC (2006) Iron uptake in fungi: a system for every source. Biochim Biophys Acta 1763:636–645.

    PubMed  CAS  Google Scholar 

  • Phinney BS, Thelen JJ (2005) Proteomic characterization of a triton-insoluble fraction from chloroplasts defines a novel group of proteins associated with macromolecular structures. J Proteome Res 4:497–506.

    PubMed  CAS  Google Scholar 

  • Pike LJ (2004) Lipid rafts: heterogeneity on the high seas. Biochem J 378:281–292.

    PubMed  CAS  Google Scholar 

  • Poetsch A, Neff D, Seelert H, Schägger H, Dencher NA (2000) Dye removal, catalytic activity and 2D crystallization of chloroplast H+-ATP synthase purified by blue native electrophoresis. Biochim Biophys Acta 1466:339–349.

    PubMed  CAS  Google Scholar 

  • Preger V, Scagliarini S, Pupillo P, Trost P (2004) Identification of an ascorbate-dependent cytochrome bof the tonoplast membrane sharing biochemical features with members of the cytochrome b561 family. Planta 220:365–375.

    PubMed  Google Scholar 

  • Puig S, Andrés-Colás N, García-Molina A, Peñarubia L (2006) Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ 30:271–290.

    Google Scholar 

  • Qiu QS, Liang HG (1995) Lipid peroxidation caused by the redox system of plasma membranes from wheat roots. J Plant Physiol 145:261–265.

    CAS  Google Scholar 

  • Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84.

    PubMed  CAS  Google Scholar 

  • Rajan S, Preisig-Muller R, Wischmeyer E, Nehring R, Hanley PJ, Renigunta V, Musset B, Schlichthorl G, Derst C, Karschin A, Daut J (2002) Interaction with 14–3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. J Physiol 545:13–26.

    PubMed  CAS  Google Scholar 

  • Rawyler A, Arpagaus S, Braendle R (2002) Impact of oxygen stress and energy availability on membrane stability of plant cells. Ann Bot 90:499–507.

    PubMed  CAS  Google Scholar 

  • Roberts LA, Pierson AJ, Panaviene Z, Walker EL (2004) Yellow stripe1. Expanded roles for the maize iron-phytosiderophore transporter. Plant Physiol 135:112–120.

    PubMed  CAS  Google Scholar 

  • Robinson NJ, Sadjuga MR, Groom QJ (1997) The froh gene family from Arabidopsis thaliana: putative iron-chelate reductases. Plant Soil 196:245–248.

    CAS  Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697.

    PubMed  CAS  Google Scholar 

  • Rubinstein B, Stern AI (1986) Relationship of transplasmalemma redox activity to proton and solute transport by roots of Zea mays. Plant Physiol 80:805–811.

    PubMed  CAS  Google Scholar 

  • Santoni V (2007) Plant plasma membrane protein extraction and solubilization for proteomic analysis. Methods Mol Biol 355:93–109.

    PubMed  CAS  Google Scholar 

  • Santoni V, Rouquie D, Doumas P, Mansion M, Boutry M, Degand H, Dupree P, Packman L, Sherrier J, Prime T, Bauw G, Posada E, Rouze P, Dehais P, Sahnoun I, Barlier I, Rossignol M (1998) Use of a proteome strategy for taggin proteins present at the plasma membrane. Plant J 16:633–641.

    PubMed  CAS  Google Scholar 

  • Santoni V, Kieffer S, Desclaux D, Masson F, Rabilloud T (2000) Membrane proteomics: use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophorectic properties. Electrophoresis 21:3329–3344.

    PubMed  CAS  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, Wiren N von (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem 279:9091–9096.

    PubMed  CAS  Google Scholar 

  • Schägerlof U, Wilson G, Herbert H, Al-Karadaghi S, Hägerhäll C (2006) Transmembrane topology of FRO2, a ferric chelate reductase from Arabidopsis thaliana. Plant Mol Biol 62:215–221.

    PubMed  Google Scholar 

  • Schägger H (2003) Blue native electrophoresis. In: Hunte C, Michel H (eds) Membrane protein purification and crystallization. Elsevier Science, London, pp 105–130.

    Google Scholar 

  • Schägger H, Jagow G von (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231.

    PubMed  Google Scholar 

  • Scheibe R (2004) Malate valves to balance cellular energy supply. Physiol Plant 120:21–26.

    PubMed  CAS  Google Scholar 

  • Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141:1–26.

    CAS  Google Scholar 

  • Schroeder F (1984) Fluorescent sterols: probe molecules of membrane structure and function. Prog Lipid Res 23:97–113.

    PubMed  CAS  Google Scholar 

  • Schwacke R, Flügge UI, Kunze R (2003) Plant membrane proteom databases. Plant Physiol Biochem 42:1023–1034.

    Google Scholar 

  • Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223.

    PubMed  CAS  Google Scholar 

  • Serrano A, Córdoba F, Gonzáles-Reyes JA, Navas P, Villalba JM (1994a) Purification and characterization of two distinct NAD(P) H dehydrogenases from onion (Allium cepa L.) root plasma membrane. Plant Physiol 106:87–96.

    PubMed  CAS  Google Scholar 

  • Serrano A, Villalba JM, González-Reyes JA, Navas P, Córdoba F (1994b) Two distinct NAD(P) H-dependent redox enzymes isolated from onion root plasma membranes. Biochem Mol Biol Int 32:841–849.

    PubMed  CAS  Google Scholar 

  • Serrano A, Cordoba F, González-Reyes JA, Santos C, Navas P, Villalba JM (1995) NADH-specific dehydrogenase from onion root plasma membrane: purification and characterization. Protoplasma 184:133–139.

    CAS  Google Scholar 

  • Shahollari B, Varma A, Oelmüller R (2005) Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. J Plant Physiol 162:945–958.

    PubMed  CAS  Google Scholar 

  • Shapiro AD (2005) Nitric oxide signaling in plants. Vitam Horm 72:339–398.

    PubMed  CAS  Google Scholar 

  • Simon-Plas F, Elmayan T, Blein JP (2002) The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J 31:137–147.

    PubMed  CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572.

    PubMed  CAS  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Sci 175:720–731.

    CAS  Google Scholar 

  • Sparla F, Tedeschi G, Trost P (1996) NAD(P) H:(quinone-acceptor) oxidoreductase of tobacco leaves is a flavin mononucleotide-containing flavoenzyme. Plant Physiol 112:249–258.

    PubMed  CAS  Google Scholar 

  • Sparla F, Bagnaresi P, Scagliarini S, Trost P (1997) NADH:Fe(III)-chelate reductase of maize roots is an active cytochrome b 5 reductase. FEBS Lett 414:571–575.

    PubMed  CAS  Google Scholar 

  • Sparla F, Tedeschi G, Pupillo P, Trost P (1999) Cloning and heterologous expression of NAD(P) H:quinone reductase of Arabidopsis thaliana, a functional homologue of animal DT-diaphorase. FEBS Lett 463:382–386.

    PubMed  CAS  Google Scholar 

  • Sperling P, Franke S, Lüthje S, Heinz E (2005) Are glucocerebrosides the predominant shingolipids in plant plasma membranes? Plant Physiol Biochem 43:1031–1038.

    PubMed  CAS  Google Scholar 

  • Srere PA, Sherry AD, Malloy CR, Sumegi B (1997) Channelling in the Krebs tricarboxylic acid cycle. In: Agius L, Sherratt HSA (eds) Channeling in intermediary metabolism, Portland. London, pp 201–217.

    Google Scholar 

  • Stöhr C (1998) Plasma membrane-bound nitrate reductase in algae and higher plants. In: Asard H, Bérczi A, Caubergs RJ (eds) Plasma membrane redox systems and their role in biological stress and disease, Kluwer, Dordrecht, pp 103–119.

    Google Scholar 

  • Stöhr C (1999) Relationship of nitrate supply with growth rate plasma membrane-bound and cytosolic nitrate reductase, and tissue nitrate content in tobacco plants. Plant Cell Environ 22:169–177.

    Google Scholar 

  • Stöhr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot 57:463–470.

    PubMed  Google Scholar 

  • Stöhr C, Ullrich WR (1997) A succinate-oxidizing nitrate reductase is located at the plasma membrane of plant roots. Planta 203:129–132.

    Google Scholar 

  • Stöhr C, Ullrich WR (2002) Generation and possible roles of NO in plant roots and their apoplastic space. J Exp Bot 53:2293–2303.

    PubMed  Google Scholar 

  • Stöhr C, Schuler F, Tischner R (1995) Glycosyl-phosphatidylinositol-anchored proteins exist in the plasma membrane of Chlorella sorokiniana. Planta 196:284–287.

    Google Scholar 

  • Stöhr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841.

    PubMed  Google Scholar 

  • Struglics A, Fredlund KM, Rasmussin AG, Møller IM (1993) The presence of a short redox chain in the membrane of intact potato tuber peroxisomes and the association of malate dehydrogenase with the peroxisomal membrane. Physiol Plant 88:19–28.

    CAS  Google Scholar 

  • Sutter JU, Campanoni P, Tyrrell M, Blatt MR (2006) Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane. Plant Cell 18:935–954.

    PubMed  CAS  Google Scholar 

  • Takagi S (1976) Naturally occurring iron-chelating compounds in oat- and rice-root washing. I. Activity measurement and preliminary characterization. Soil Sci Plant Nutr 22:423–433.

    CAS  Google Scholar 

  • Takagi S, Nomoto K, Takemoto T (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutr 7:1–5.

    Google Scholar 

  • Takahashi M, Yamaguchi H, Nakanishi H, Nishizawa NK, Mori S (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (strategy II) in graminaceous plants. Plant Physiol 121:947–956.

    PubMed  CAS  Google Scholar 

  • Thrasher AJ, Keep NH, et al (1994) Chronic granulomatousdisease. Biochim Biophys Acta Mol Basis Dis 1227:1–24.

    CAS  Google Scholar 

  • Tivodar S, Paladino S, Pillich R, Prinetti A, Chigomo V, Merr G van, Sonnino S, Zurzolo C (2006) Analysis of detergent-resistant membranes associated with apical and basolateral GPI-anchored proteins in polarized epithelial cells. FEBS Lett 580:5702–5712.

    Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403.

    PubMed  CAS  Google Scholar 

  • Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kossack KE, Jones DJG (1998) Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J 14:365–370.

    PubMed  CAS  Google Scholar 

  • Torres MA, Dangl J, Jones JDG (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 99:517–522.

    PubMed  CAS  Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378.

    PubMed  CAS  Google Scholar 

  • Trost P, Foscarini S, Preger S, Bonora P, Vitale L, Pupillo P (1997) Dissecting the diphenylene iodonium-sensitive NAD(P) H:quinone oxidoreductase of zucchini plasma membrane. Plant Physiol 114:737–746.

    PubMed  CAS  Google Scholar 

  • Trost P, Bérczi A, Sparla F, Sponza G, Marzadori B, Asard H, Pupillo P (2000) Purification of cytochrome b-561 from bean hypocotyls plasma membrane. Evidence for the presence of two heme centers. Biochim Biophys Acta 1468:1–5.

    PubMed  CAS  Google Scholar 

  • Uemura M, Steponkus PL (1994) A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiol 104:479–496.

    PubMed  CAS  Google Scholar 

  • Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana: effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol 109:15–30.

    PubMed  CAS  Google Scholar 

  • Uemura M, Tominaga Y, Nakagawara C, Shigematsu S, Minami A, Kawamura Y (2006) Responses of the plasma membrane to low temperatures. Physiol Plant 126:81–89.

    CAS  Google Scholar 

  • Ushio-Fukai M (2006) Localizing NADPH oxidase-derived ROS. Sci Signal Transduct Knowl Environ 349:re8.

    Google Scholar 

  • Van Gestelen P, Asard H, Caubergs RJ (1997) Solubilization and separation of a plant plasma membrane NADPH-O2 synthase from other NAD(P) H oxidoreductases. Plant Physiol 115:543–550.

    PubMed  Google Scholar 

  • Van Gestelen P, Asard H, Horemans N, Caubergs RJ (1998) Superoxide-producing NAD(P) H-oxidases in plasma membrane vesicles from elicitor responsive bean plants. Physiol Plant 104:653–660.

    Google Scholar 

  • Vasconcelos M, Eckert H, Arahana V, Graef G, Grusak MA, Clemente T (2006) Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2. Planta 224:1116–1128.

    PubMed  CAS  Google Scholar 

  • Vereb G, Szöllösi J, Matko J, Nagy P, Farkas T, Vigh L, Mátyus L, Waldmann TA, Damjanovich S (2003) Dynamic, yet structured: the cell membrane three decades after Singer–Nicholson model. Proc Natl Acad Sci USA 100:8053–8058.

    PubMed  CAS  Google Scholar 

  • Verelst W, Asard H (2003) A phylogenetic study of cytochrome b561 proteins. Genet Biol 4:38.

    Google Scholar 

  • Verelst W, Asard H (2004) Analysis of an Arabidopsis thaliana protein family, structurally related to cytochromes b561 and potentially involved in catecholamine biochemistry in plants. J Plant Physiol 161:175–181.

    PubMed  CAS  Google Scholar 

  • Vert G, Briat J, Curie C (2001) Arabidopsis IRT2 gene encodes a root periphery iron transporter. Plant J 26:181–189.

    PubMed  CAS  Google Scholar 

  • Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat, JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233.

    PubMed  CAS  Google Scholar 

  • Vervoort LM, Ronden JE, Thijssen HH (1997) The potent antioxidant activity of vitamin K cycle in microsomal lipid peroxidation. Biochem Pharm 54:871–876.

    PubMed  CAS  Google Scholar 

  • Vianello A, Macri F (1991) Generation of superoxide anion hydrogen peroxide at the surface of plant cells. J Bioenerg Biomembr 23:409–423.

    PubMed  CAS  Google Scholar 

  • Villalba JM, Crane FL, Navas P (1998) Antioxidative role of ubiquinone in animal plasma membranes. In: Asard H, Bérczi A, Caubergs R (eds) Plasma membrane redox systems and their role in biological stress and disease. Kluwer, Dodrecht, pp 247–265.

    Google Scholar 

  • Wachtler V, Balasubramanian MK (2006) Yeast lipid rafts?–an emerging view. Trends Cell Biol 16:1–4.

    PubMed  CAS  Google Scholar 

  • Wallis JG, Watts J, Browse J (2002) Polyunsaturated fatty acid synthesis: what will they think of next? Trends Biol Sci 27:467–473.

    CAS  Google Scholar 

  • Warude D, Joshi K, Harsulkar A (2006) Polyunsaturared fatty acids: biotechnology. Crit Rev Biotechnol 26:83–93.

    PubMed  CAS  Google Scholar 

  • Waters BM, Blevins DG, Eide DJ (2002) Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiol 129:85–94.

    PubMed  CAS  Google Scholar 

  • Webb MS, Uemura M, Steponkus PL (1994) A comparison of freezing injury in oat and rye: two cereals at the extremes of freezing tolerance. Plant Physiol 104:467–478.

    PubMed  CAS  Google Scholar 

  • Weger HG, Espie GS (2000) Ferric reduction by iron-limited Chlamydomonas cells interacts with both photosynthesis and respiration. Planta 210:775–781.

    PubMed  CAS  Google Scholar 

  • Weger HG, Middlemiss JK, Petterson CD (2002) Ferric chelate reductase activity as affected by the iron-limited growth rate in four species of unicellular green algae (Chlorophyta). J Phycol 38:513–519.

    CAS  Google Scholar 

  • Weger HG, Matz CJ, Magnus RS, Walker CN, Fink MB, Treble RG (2006) Differences between two green algae in biological availability of iron bound to strong chelators. Can J Bot 84:400–411.

    CAS  Google Scholar 

  • Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2:388–393.

    CAS  Google Scholar 

  • Widell S, Lundborg T, Larsson C (1982) Plasma membranes from oats prepared by partition in an aqueous polymer two-phase system: on the use of light-induced cytochrome b reduction as a marker for the plasma membrane. Plant Physiol 70:1429–1435.

    PubMed  CAS  Google Scholar 

  • Wu H, Li L, Du J, Yuan Y, Cheng X, Ling H-Q (2005) Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana. Plant Cell Physiol 46:1505–1514.

    PubMed  CAS  Google Scholar 

  • Xu X, Bittman R, Duportail G, Heissler D, Vilcheze C, London E (2001) Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). J Biol Chem 276:33540–33546.

    PubMed  CAS  Google Scholar 

  • Yoshida S, Uemura M (1984) Protein and lipid composition of isolated plasma membranes from orchard grass (Dactylis glomerata L.) and changes during cold acclimation. Plant Physiol 75:31–37.

    PubMed  CAS  Google Scholar 

  • Yoshida S, Uemura M, Niki T, Sakai A, Gusta LV (1983) Partition of membrane particles in aqueous two-polymer phase systems and its practical use for purification of plasma membranes from plants. Plant Physiol 72:105–114.

    PubMed  CAS  Google Scholar 

  • Yoshimura K, Ishikawa T, Nakamura Y, Tamoi M, Takeda T, Tada T, Nishimura K, Shigeoka S (1998) Comparative study on recombinant chloroplastic and cytosolic ascorbate peroxidase isozymes of spinach. Arch Biochem Biophys 353:55–63.

    PubMed  CAS  Google Scholar 

  • Yoshioka H, Sugie K, Park HJ, Maeda H, Tsuda N, Kawakita K, Doke N (2001) Induction of plant gp91 phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in Potato. Mol Plant Microb Interact 14:725–736.

    CAS  Google Scholar 

  • Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JDG, Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706–718.

    PubMed  CAS  Google Scholar 

  • Zuckermann MJ, Ipsen JH, Miao L, Mouritsen OG, Nielsen M, Polson J, Thewalt J, Vattulainen I, Zhu H (2004) Modeling lipid–sterol bilayers: applications to structural evolution, lateral diffusion, and rafts. Methods Enzymol 383:198–229.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lüthje, S. (2008). Plasma Membrane Redox Systems: Lipid Rafts and Protein Assemblies. In: Lüttge, U., Beyschlag, W., Murata, J. (eds) Progress in Botany. Progress in Botany, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72954-9_7

Download citation

Publish with us

Policies and ethics