Skip to main content

Molecular Cell Biology: Are Reactive Oxygen Species Regulators of Leaf Senescence?

  • Chapter

Part of the book series: Progress in Botany ((BOTANY,volume 69))

Senescence processes can influence many important agricultural traits; however, our knowledge concerning regulatory mechanisms controlling senescence is still limited. Free radicals are thought to play an essential role in senescence, especially those derived from oxygen. In addition to their deleterious functions, they might serve as signalling molecules. The critical balance between production and scavenging of reactive oxygen species (ROS), which normally is very tightly regulated, appears to be specifically disrupted during the progression of senescence in different cellular compartments either by depletion of antioxidants or excess production of ROS. Hydrogen peroxide (H2O2) is very likely the most important ROS. In contrast to other ROS, it has a relatively long half-life and can also pass membranes; therefore, it can be assumed that it executes signalling functions. Hydrogen peroxide is produced in different cell compartments but can also be released into the cytosol or vice versa. The role of ROS originating from different cellular compartments like chloroplasts, peroxisomes or mitochandria is discussed here with respect to senescence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1238.

    Google Scholar 

  • Arrigo AP (1999) Gene expression and the thiol redox state. Free Radical Biol Med 27: 936–944.

    Google Scholar 

  • Baker NR (1991) A possible role for photosystem II in environmental perturbations of photosynthesis. Physiol Plant 81:563–570.

    Google Scholar 

  • Barth C, Moeder W, Klessig DF, Conklin PL (2004) The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiol 134:1784–1792.

    PubMed  Google Scholar 

  • Batt T, Woolhouse HW (1975) Changing activities during senescence and sites of synthesis of photosynthetic enzymes in leaves of labiate, Perilla frutenscens (L.). British J Exp Bot 26:569–579.

    Google Scholar 

  • Beligni MV, Lamattina L (1999) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208:337–344.

    Google Scholar 

  • Borghouts C, Werner A, Elthon T, Osiewacz HD (2001) Copper-modulated gene expression and senescence in the filamentous fungus Podospora anserine. Mol Cell Biol 21:390–399.

    PubMed  Google Scholar 

  • Bowler C, Van Montagu M, Inzé D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116.

    Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585.

    PubMed  Google Scholar 

  • Casano LM, Martín M, Sabater B (1994) Sensitivity of superoxide dismutase transcript levels and activities to oxidative stress is lower in mature-senescent than in young barley leaves. Plant Physiol 106:1033–1039.

    PubMed  Google Scholar 

  • Chia LS, Thompson JE, Dumbroff EB (1981) Simulation of the effects of leaf senescence on membranes by treatment with paraquat. Plant Physiol 67:415–420.

    PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Río LA del (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150.

    PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A, Quirós M, León AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM, Sandalio LM, Gómez M, del Río LA (2004) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol 136:2722–2733.

    PubMed  Google Scholar 

  • Crawford NM, Galli M, Tischner R, Heimer YM, Okamoto M, Mack A (2006) Response to Zemojtel et al. Plant nitric oxide synthase: back to square one. Trends Plant Sci 11:526–527.

    Google Scholar 

  • Dalton DA, Langeberg L, Treneman NC (1993) Correlations between the ascorbate–glutathione pathway and effectiveness in legume root nodules. Physiol Plant 87:365–370.

    Google Scholar 

  • Dat JF, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795.

    PubMed  Google Scholar 

  • Delaunay A, Pflieger D, Barrault MB, Vinh J, Toledano MB (2002) A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111:471–481.

    PubMed  Google Scholar 

  • Dertinger U, Schaz U, Schulze ED (2003) Age-dependence of the antioxidative system in tobacco with enhanced glutathione reductase activity or senescence-induced production of cytokinins. Physiol Plant 119:19–29.

    Google Scholar 

  • Desikan, R, Mackerness AHS, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172.

    PubMed  Google Scholar 

  • Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot 55: 205–212.

    PubMed  Google Scholar 

  • Dhinsda RJ, Dhinsda PP, Thorpe TA (1981) Leaf senescence: correlation with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101.

    Google Scholar 

  • Diaz C, Purdy S, Christ A, Morot-Gaudry J-F, Wingler A, Masclaux-Daubresse C (2005) Characterization of markers to determine the extent and variability of leaf senescence in Arabidopsis thaliana: a metabolic profiling approach. Plant Physiol 138:898–908.

    PubMed  Google Scholar 

  • Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, Nunes de Miranda SM, Baier M, Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57:1697–1709.

    PubMed  Google Scholar 

  • Djanaguiraman M, Devi DD, Shanker AK, Sheeba JA, Bangarusamy U (2005) Selenium–an antioxidative protectant in soybean during senescence. Plant Soil 272:77–86.

    Google Scholar 

  • Dufour E, Larsson NG (2004) Understanding aging: revealing order out of chaos. Biochim Biophys Acta 1658:122–132.

    PubMed  Google Scholar 

  • Dufour E, Boulay J, Rincheval V, Sainsard-Chanet A (2000) A causal link betweeen respiration and senescence in Podospora anserina. Proc Natl Acad Sci USA 97:4138–4143.

    PubMed  Google Scholar 

  • Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574.

    PubMed  Google Scholar 

  • Evans PJ, Gallesi D, Mathieu C, Hernandez MJ, Felip M de, Halliwell B, Puppo A (1999) Oxidative stress occurs during soybean nodule senescence. Planta 208:73–79.

    Google Scholar 

  • Fajkus J, Zentgraf U (2002) Structure and maintenance of chromosome ends. In: Krupp G, Parwaresch R (eds) Telomeres and telomerases: cancer and biology. Bioscience/Gen-Expression, available at: www.eurekah.com.

  • Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:E255–E263.

    PubMed  Google Scholar 

  • Foyer CH (1996) Oxygen processing in photosynthesis. Biochem Soc Trans 24:427–433.

    PubMed  Google Scholar 

  • Foyer CH (2004) The role of ascorbic acid in defense networks and signaling in plants. In: Asard H, May JM, Smirnoff S (eds) Vitamin C. Functions and biochemistry in animals and plants. Bios, Oxford, pp 65–82.

    Google Scholar 

  • Foyer CH, Trebstm A, Noctor G (2005) Protective and signalling functions of ascorbate, glutathione and tocopherol in chloroplasts. In: Demmig-Adams B, Adams WW (eds) Advances in photosynthesis and respiration: photoprotection, photoinhibition, gene regulation, and environment, vol 19. Kluwer, Dordrecht, pp 241–268.

    Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988.

    PubMed  Google Scholar 

  • Gan S, Amasino RM (1997) Making sense of senescence: molecular genetic regulation and manipulation of leaf senescence. Plant Physiol 113:313–319.

    PubMed  Google Scholar 

  • Gasch A, Spellman P, Kao C, Harel O, Eisen M, Storz G, Botstein D, Brown P (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257.

    PubMed  Google Scholar 

  • Grbic V, Bleecker AB (1995) Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J 8:595–602.

    Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312.

    PubMed  Google Scholar 

  • Groten K Vanacke, H, Dutilleul C, Bastian F, Bernhard S, Carzaniga R, Foyer CH (2005) The roles of redox processes in pea nodule development and senescence. Plant Cell Environ 28:1293–1304.

    Google Scholar 

  • Guo FQ (2006) Response to Zemojtel et al. Plant nitric oxide synthase: AtNOS1 is just the beginning. Trends Plant Sci 11:527–528.

    Google Scholar 

  • Guo FQ, Crawford NM (2005) Arabidopsis Nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436–3450.

    PubMed  Google Scholar 

  • Haghdoost S, Sjolander L, Czene S, Hanns-Ringdahl M (2006) The nucleotide pool is a significant target for oxidative stress. Free Radical Biol Med 41:620–626.

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn. Oxford University Press, Oxford.

    Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Geront 11:298–300.

    PubMed  Google Scholar 

  • Harman D (1998) Extending functional life span. Exp Geront 33:95–112.

    Google Scholar 

  • He Y, Tang W, Swain JD, Green AL, Jack TP, Gan S (2001) Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol 126:707–716.

    PubMed  Google Scholar 

  • He Y, Fukushige H, Hildebrande DF, Gan S (2002) Evidence supporting a role for jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128:876–884.

    PubMed  Google Scholar 

  • Hensel LL, Grbić V, Baumgarten D, Bleecker AB (1993) Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 5:553–564.

    PubMed  Google Scholar 

  • Himelblau E, Mira H, Lin SJ, Culotta VC, Penarrubia L, Amasino RM (1998) Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis. Plant Physiol 117:1227–1234.

    PubMed  Google Scholar 

  • Hinderhofer K, Zentgraf U (2001) Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta 213:469–473.

    PubMed  Google Scholar 

  • Hiser C, McIntosh L (1990) Alternative oxidase of potato is an integral membrane protein synthesized de novo during aging of tuber slices. Plant Physiol 93:312–318.

    PubMed  Google Scholar 

  • Hollander-Czytko H, Grabowski J, Sandorf I, Weckermann K, Weiler EW (2005) Tocopherol content and activities of tyrosine aminotransferase and cystine lyase in Arabidopsis under stress conditions. J Plant Physiol 162: 767–770.

    PubMed  Google Scholar 

  • Jiménez A, Hernández JA, Río LA del, Sevilla F (1997) Evidence for the presence of the ascorbate–glutathione cycle in mitochondria and peroxisomes of pea (Pisum sativum L.) leaves. Plant Physiol 114:275–284.

    PubMed  Google Scholar 

  • Jiménez A, Hernandez JA, Pastori G, Rio LA del, Sevilla F(1998) Role of the ascorbate–glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335.

    PubMed  Google Scholar 

  • John I, Drake R, Farrell A, Cooper W, Lee P, Horton P, Grierson D (1995) Delayed leaf senescence in ethylene-deficient ACC-oxidase antisense tomato plants: molecular and physiological analysis. Plant J 7:483–490.

    Google Scholar 

  • Jones A (2000) Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trends Plant Sci 5:225–230.

    PubMed  Google Scholar 

  • Jongebloed U, Szederkényi J, Hartig K, Schobert C, Komor E (2004) Sequence of morphological and physiological events during natural ageing of a castor bean leaf: sieve tube occlusions and carbohydrate back-up precede chlorophyll degradation. Physiol Plant 120:338–346.

    PubMed  Google Scholar 

  • Kar M, Feierabend J (1984) Metabolism of activated oxygen in detached wheat and rye leaves and its relevance to the initiation of senescence. Planta 160:385–391.

    Google Scholar 

  • Keskitalo J, Bergquist G, Gardestrom P, Jansson S (2005) A cellular timetable of autumn senescence. Plant Physiol 139:1635–1648.

    PubMed  Google Scholar 

  • Kilian A, Stiff C, Kleinhofs A (1995) Barley telomeres shorten during differentiation but grow in callus culture. Proc Natl Acad Sci USA 92:9555–9559.

    PubMed  Google Scholar 

  • Knox JP, Dodge AD (1985) Singlet oxygen and plants. Phytochemistry 24:889–896.

    Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinases cascade in plants. Proc Natl Acad Sci USA 97:2940–2945.

    PubMed  Google Scholar 

  • Krupinska K, Falk J, Humbeck K (2003) Genetic, metabolic and environmental factors associated with ageing in plants. In: Osiewacz HD (ed) Aging of organisms. Kluwer, Dordrecht, pp 55–78.

    Google Scholar 

  • Kurepa J, Smalle J, Van Montagu M, Inzé D (1998) Oxidative stress tolerance and longevity in Arabidopsis: the late flowering mutant gigantea is tolerant to paraquat. Plant J 14:759–764.

    PubMed  Google Scholar 

  • Landolt R, Matile P (1990) Glyoxysome-like microbodies in senescent spinach leaves. Plant Sci 72:159–163.

    Google Scholar 

  • Lee H, Lee JS, Bae EK, Choi YI, Noh EW (2005) Differential expression of a poplar copper chaperone gene in response to various abiotic stresses. Tree Physiol 25:395–401.

    PubMed  Google Scholar 

  • Li W, Ruf S, Bock R (2006) Constancy of organellar genome copy numbers during leaf development and senescence in higher plants. Mol Genet Genomics 275:185–192.

    PubMed  Google Scholar 

  • Lopez-Huertas E, Charlton WL, Johnson B, Graham IA, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19:6770–6777.

    PubMed  Google Scholar 

  • Martin GM, Austad SN, Johnson TE (1996) Genetic analysis of aging: role of oxidative damage and environmental stresses. Nat Genet 13:25–34.

    PubMed  Google Scholar 

  • Martin-Tryon EL, Kreps JA, Harmer SL (2006) GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation. Plant Physiol 143:473–486.

    PubMed  Google Scholar 

  • Masclaux C, Valadier MH, Brugière N, Morot-Gaudry JF, Hirel B (2000) Characterization of the sink/source transition in tobacco (Nicotiana tabacum L) shoots in relation to nitrogen management and leaf senescence. Planta 211:510–518.

    PubMed  Google Scholar 

  • Matile P, Schellenberg M, Peisker C (1992) Production and release of a chlorophyll catabolite in isolated senescent chloroplasts. Planta 187:230–235.

    Google Scholar 

  • Matile P, Hörtensteiner S, Thomas H, Kräutler B (1996) Chlorophyll breakdown in senescent leaves. Plant Physiol 112:1403–1409.

    PubMed  Google Scholar 

  • Maxwell DP, Nickels R, McIntosh L (2002) Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant J 29:269–279.

    PubMed  Google Scholar 

  • May JM, Qu ZC, Mendiratta S (1998) Protection and recycling of alpha-tocopherol in human erythrocytes by intracellular ascorbic acid. Arch Biochem Biophys 349:281–289.

    PubMed  Google Scholar 

  • McIntosh L (1994) Molecular biology of the alternative oxidase. Plant Physiol 105:781–786.

    PubMed  Google Scholar 

  • McRae DG, Thompson JE (1983) Senescence dependent changes in superoxide anion production by illuminated chloroplast from bean leaves. Planta 158:185–193.

    Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867.

    PubMed  Google Scholar 

  • Miao Y, Laun T, Smykowski A, Zentgraf U (2007) Arabidopsis MEKK1 can take a short cut: it can directly interact with the senescence-related WRKY53 transcription factor on the protein level and it can bind to its promoter. Plant Mol Biol, DOI 10.1007/s11103–007-9198-z.

    Google Scholar 

  • Millenaar FF, Lambers H (2003) The alternative oxidase: in vivo regulation and function. Plant Biol 5:2–15.

    Google Scholar 

  • Miller JD, Arteca RN, Pell EJ (1999) Senescence-associated gene expression during ozone-induced leaf senescence. Plant Physiol 120:1015–1023.

    PubMed  Google Scholar 

  • Mira H, Martinez N, Penarrubia L (2002) Expression of a vegetative-storage-protein gene from Arabidopsis is regulated by copper, senescence and ozone. Planta 214:939–946.

    PubMed  Google Scholar 

  • Mishina TE, Lamb C, Zeier J (2007) Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant Cell Environ 30:39–52.

    PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498.

    PubMed  Google Scholar 

  • Moore AL, Albury MS, Crichton PG, Affourtit C (2002) Function of the alternative oxidase: is it still a scavenger? Trends Plant Sci 7:478–481.

    PubMed  Google Scholar 

  • Munne-Bosch S, Alegre L (2002) Plant aging increases oxidative stress in chloroplasts. Planta 214:608–615.

    PubMed  Google Scholar 

  • Munne-Bosch S, Falk J (2004) New insights into the function of tocopherols in plants. Planta 218:323–326.

    PubMed  Google Scholar 

  • Nakagami H, Kiegerl S, Hirt H (2004) OMTK1, a novel MAPKKK, channels oxidative stress signalling through direct MAPK interaction. J Biol Chem 279:26959–26966.

    PubMed  Google Scholar 

  • Navabpour S, Morris K, Allen R, Harrison E, Mackerness SAH, Buchanan-Wollaston V (2003) Expression of senescence-enhanced genes in response to oxidative stress. J Exp Bot 54:2285–2292.

    PubMed  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247.

    PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279.

    PubMed  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscol S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in wheat leaves: a predominant role for photorespiration? Ann Bot 89:841–850.

    PubMed  Google Scholar 

  • Noodén LD, Guiamét JJ, John I (1997) Senescence mechanisms. Physiol Plant 101:746–753.

    Google Scholar 

  • Orendi G, Zimmermann P, Baar C, Zentgraf U (2001) Loss of stress-induced expression of catalase3 during leaf senescence in Arabidopsis thaliana is restricted to oxidative stress. Plant Sci 161:301–314.

    PubMed  Google Scholar 

  • Opresko PL, Fan JH, Danzy S, Wilson DM, Bohr VA (2005) Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2. Nucleic Acid Res 33:1230–1239.

    PubMed  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130.

    PubMed  Google Scholar 

  • Panavas T, Rubinstein B (1998) Oxidative events during programmed cell death of daylily (Hemerocallis hybrid) petals. Plant Sci 133:125–138.

    Google Scholar 

  • Parthier B (1988) Gerontoplasts–the yellow end in the ontogenesis of chloroplasts. Endocytobiosis Cell Res 5:163–190.

    Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265.

    PubMed  Google Scholar 

  • Pastori GM, Rio LA del (1994) An activated-oxygen-mediated role for peroxisomes in the mechanism of senescence of Pisum sativum L. leaves. Planta 193:385–391.

    Google Scholar 

  • Pastori GM, Río LA del (1997) Natural senescence of pea leaves: an activated oxygen-mediated function for peroxisomes. Plant Physiol 113:411–418.

    PubMed  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovi, S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15:939–951.

    PubMed  Google Scholar 

  • Pauls KP, Thompson JE (1984) Evidence for the accumulation of peroxidized lipids in membranes of senescing cotyledons. Plant Physiol 75:1152–1157.

    PubMed  Google Scholar 

  • Pérez-Ruiz JM, Spínola MC, Kirchsteiger K, Moreno J, Sahrawy M, Cejudo FJ (2006) Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage. Plant Cell 18:356–2368 http://www.plantcell.org/egi/content/full/18/9/2356 - FNI.

    Google Scholar 

  • Pich MM, Raule N, Catani L, Fagioli ME, Faenza I, CoccoL, Lenaz G (2004) Increased transcription of mitochondrial genes for complex I in human platelets during ageing. FEBS Lett 558:19–22.

    Google Scholar 

  • Pistelli L, Nieri B, Smith SM, Alpi A, De Bellis L (1996) Glyoxylate cycle enzyme activities are induced in senescent pumpkin fruits. Plant Sci 119:23–29.

    Google Scholar 

  • Polle A (2001) Dissecting the superoxide dismutase–ascorbate–glutathione pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol 126:445–462.

    PubMed  Google Scholar 

  • Potters G, Horemans N, Bellone S, Caubergs RJ, Trost P, Guisez Y, Asard H (2004) Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiol 134:1479–1487.

    PubMed  Google Scholar 

  • Pourtau N, Marès M, Purdy S, Quentin N, Ruël A, Wingler A (2004) Interactions of abscisic acid and sugar signalling in the regulation of leaf senescence. Planta 219:765–772.

    PubMed  Google Scholar 

  • Pourtau N, Jennings R, Pelze, E, Pallas J, Wingler A (2006) Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis. Planta 224:556–568.

    PubMed  Google Scholar 

  • Prakash JS, Baig MA, Mohanty P (2001) Senescence induced structural reorganization of thylakoid membranes in Cucumis sativus cotyledons; LHC II involvement in reorganization of thylakoid membranes. Photosynth Res 68:153–161.

    PubMed  Google Scholar 

  • Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas MM, Felipe MR de, Harrison J, Vanacker H, Foyer CH (2005) Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytol 165:683–701.

    PubMed  Google Scholar 

  • Quirino BF, Reiter WD, Amasino RM (2001) One of two tandem Arabidopsis genes homologous to monosaccharide transporters is senescence-associated. Plant Mol Biol 46:447–457.

    PubMed  Google Scholar 

  • Richter C, Schweizer M (1997) Oxidative stress in mitochondria. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defences. Cold Spring Harbor Laboratory Press, New York, pp 169–200.

    Google Scholar 

  • Río LA del, Pastori, GM, Palma JM, Sandalio LM, Sevilla F, Corpas FJ, Jiménez A, López-Huertas E, Hernández JA (1998) The activated oxygen role of peroxisomes in senescence. Plant Physiol 116:1195–1200.

    PubMed  Google Scholar 

  • Río LA del, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272.

    PubMed  Google Scholar 

  • Rio LA del, Sandalio LM, Altomare DA, Zilinskas BA (2003) Mitochondrial and peroxisomal manganese superoxide dismutase: differential expression during leaf senescence. J Exp Bot 54:923–933.

    PubMed  Google Scholar 

  • Rio LA del, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335.

    PubMed  Google Scholar 

  • Scandalios JG (2002) Oxidative stress responses–what have genome-scale studies taught us? Genome Biol 3:R1019.1–R1019.6.

    Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319.

    PubMed  Google Scholar 

  • Smart CM (1994) Gene expression during leaf senescence. New Phytol 126:419–448.

    Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63.

    PubMed  Google Scholar 

  • Stacy RAP, Nordeng TW, Culiáñez-Macià FA, Aelen RB (1999) The dormancy-related peroxiredoxin anti-oxidant, PER1, is localized to the nucleus of barley embryo and aleurone cells. Plant J 19:1–8.

    PubMed  Google Scholar 

  • Stessman D, Miller A, Spalding M, Rodermel S (2002) Regulation of photosynthesis during Arabidopsis leaf development in continuous light. Photosynth Res 72:27–37.

    PubMed  Google Scholar 

  • Svensson AS, Rasmusson AG (2001) Light-dependent gene expression for proteins in the respiratory chain of potato leaves. Plant J 28:73–82.

    PubMed  Google Scholar 

  • Thomas H, Stoddart JL (1980) Leaf senescence. Annu Rev Plant Physiol 31:83–111.

    Google Scholar 

  • Thomas H, Ougham H, Wagstaff C, Stead AD (2003) Defining senescence and death. J Exp Bot 54:1127–1132.

    PubMed  Google Scholar 

  • Thomas JC, Perron M, LaRosa PC, Smigocki AC (2005) Cytokinin and the regulation of a tobacco metallothionein-like gene during copper stress. Physiol Plant 123:262–271.

    Google Scholar 

  • Thompson JE, Ledg RL, Barber RF (1987) The role of free radicals in senescence and wounding. New Phytol 105:317–344.

    Google Scholar 

  • Umbach AL, Fiorani F, Siedow JN (2005) Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue. Plant Physiol 139:1806–1820.

    PubMed  Google Scholar 

  • Van Doorn WG (2004) Is petal senescence due to sugar starvation? Plant Physiol 134:35–42.

    PubMed  Google Scholar 

  • Van Staden J, Cook EL, Noodén LD (1988) Cytokinins and senescence. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic, San Diego, pp 282–328.

    Google Scholar 

  • Vanacker H, Sandalio L, Jimenez A, Palma JM, Corpas FJ, Meseguer V, Gomez M, Sevilla F, Leterrier M, Foyer CH, Rio LA del (2006) Roles for redox regulation in leaf senescence of pea plants grown on different sources of nitrogen nutrition. J Exp Bot 57:1735–1745.

    PubMed  Google Scholar 

  • Vandenabeele S, Van der Kelen K, Dat J, Gadjev I, Bonefaes T, Morsa S, Rottiers P, Sloten L, Van Montagu M, Zabeau M, Inzé D, Van Breusegem F (2003) A comprehensive analysis of hydrogen peroxide-induced gene expresión in tobacco. Proc Natl Acad Sci USA 100:16113–16118.

    PubMed  Google Scholar 

  • Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inzé D, Van Breusegem F (2005). Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139:806–821.

    PubMed  Google Scholar 

  • Von Zglincki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344.

    Google Scholar 

  • Watanabe K, Yamada N, Takeuchi Y (2006) Oxidative DNA damage in cucumber cotyledons irradiated with ultraviolet light. J Plant Res 119:239–246.

    PubMed  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inzé D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16:4806–4816.

    PubMed  Google Scholar 

  • Wingler A, Schaewen A von, Leegood RC, Lea PJ, Quick WP (1998) Regulation of leaf senescence by cytokinin, sugars, and light effects on NADH-dependent hydroxypyruvate reductase. Plant Physiol 116:329–335.

    Google Scholar 

  • Wingler A, Marès M, Pourtau N (2004) Spatial patterns and metabolic regulation of photosynthetic parameters during leaf senescence. New Phytol 161:781–789.

    Google Scholar 

  • Woo HR, Kim JH, Nam HG, Lim PO (2004) The delayed leaf senescence mutants of Arabidopsis, ore1, ore3, and ore9 are tolerant to oxidative stress. Plant Cell Physiol 45:923–932.

    PubMed  Google Scholar 

  • Ye ZZ, Rodriguez R, Tran A, Hoang H, Santos D de los, Brown S, Vellanoweth RL (2000) The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana. Plant Sci 158:115–127.

    PubMed  Google Scholar 

  • Zapater JM, Guera A, Esteban-Carrasco A, Martin M, Sabater B (2005) Chloroplasts regulate leaf senescence: delayed senescence in transgenic ndhF-defective tobacco. Cell Death Diff 12:1277–1284.

    Google Scholar 

  • Zavaleta-Mancera HA, Franklin KA, Ougham HJ, Thomas H, Schott IM (1999a) Regreening of senescent Nicotiana leaves. I. Reappearance of NADPH-protophyllide oxidoreductase and light harvesting chlorophyll a/b-binding protein. J Exp Bot 50:1677–1682.

    Google Scholar 

  • Zavaleta-Mancera HA, Thomas BJ, Thomas H, Scott IM (1999b) Regreening of Nicotiana leaves. II. Redifferentiation of plastids. J Exp Bot 50:1683–1689.

    Google Scholar 

  • Zelisko A, Garcia-Lorenzo M, Jackowski G, Jansson S, Funk C (2005) AtFtsH6 is involved in the degradation of the light-harvesting complex II during high-light acclimation and senescence. Proc Natl Acad Sci USA 102:13699–13704.

    PubMed  Google Scholar 

  • Zemojtel T, Frohlich A, Palmieri MC, Kolanczyk M, Mikula I, Wyrwicz LS, Wanker EE, Mundlos S, Vingron M, Martasek P, Durner J (2006) Plant nitric oxide synthase: a never-ending story? Trends Plant Sci 11:524–525.

    PubMed  Google Scholar 

  • Zentgraf U, Hinderhofer K, Kolb D (2000) Specific association of a small protein with the telomeric DNA-protein complex during the onset of leaf senescence in Arabidopsis thaliana. Plant Mol Biol 42:429–438.

    PubMed  Google Scholar 

  • Zimmermann P, Heinlein C, Orendi G, Zentgraf U (2006) Senescence specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ 29:1049–1060.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zentgraf, U., Hemleben, V. (2008). Molecular Cell Biology: Are Reactive Oxygen Species Regulators of Leaf Senescence?. In: Lüttge, U., Beyschlag, W., Murata, J. (eds) Progress in Botany. Progress in Botany, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72954-9_5

Download citation

Publish with us

Policies and ethics