Extranuclear Inheritance: Plastid—Nuclear Cooperation in Photosystem I Assembly in Photosynthetic Eukaryotes

  • Mark Aurel Schöttler
  • Ralph Bock
Part of the Progress in Botany book series (BOTANY, volume 69)

Photosystem I (PSI), the final complex of the photosynthetic electron transport chain, is composed of at least 15 protein subunits. PSI accumulation is tightly regulated with approximately constant PSI amounts being present under all environmental and developmental conditions. Only about one-third of the PSI subunits is encoded in the plastid genome, the other two-thirds are nucleus-encoded, made in the cytosol and post-translationally imported into the chloroplast. In higher plants, the nucleus-encoded subunits must be distributed to dozens or hundreds of chloroplasts per cell and, as the demand for nucleus-encoded PSI proteins is likely to vary between different chloroplasts in a cell, this may require control of PSI biogenesis at the level of the individual plastid. In recent years, genetic work in Chlamydomonas, Arabidopsis and tobacco has identified protein factors specifically involved in the assembly of PSI complexes. Also, first insights have been gained into the regulatory mechanisms underlying PSI biogenesis in photosynthetic eukaryotes. The picture that emerges from these studies is that the availability of the plastid-encoded reaction center subunits PsaA, PsaB and PsaC limits PSI biogenesis. All plastid-encoded subunits are predominantly regulated at the translational level, while transcriptional control is of limited relevance. Besides translation initiation, also cofactor synthesis and/or insertion into the assembling complex and the activity of assembly chaperones may contribute to the regulation of PSI accumulation. The majority of the proteins involved in the regulation of translation initiation, cofactor provision and PSI assembly are nucleus-encoded, thus allowing the nucleus to exert coarse control over PSI biogenesis.


Plastid Genome Redox Poise psaA mRNA Assembly Chaperone Nuclear Cooperation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allahverdiyeva Y, Mamedov F, Mäenpää P, Vass I, Aro EM (2005) Modulation of photosynthetic electron transport in the absence of terminal electron acceptors: characterization of the rbcL deletion mutant of tobacco. Biochim Biophys Acta 1709:69–83.CrossRefPubMedGoogle Scholar
  2. Allen JF, Pfannschmidt T (2000) Balancing the two photosystems: photosynthetic electron transport governs transcription of reaction center genes in chloroplasts. Philos Trans R Soc Lond B Biol Sci 355:1351–1359.CrossRefPubMedGoogle Scholar
  3. Amann K, Lezhneva L, Wanner G, Hermann RG, Meurer J (2004) Accumulation of photosystem 1, a member of a novel gene family, is required for accumulation of [4Fe-4S] clsuer-containing chloroplast complexes and antenna proteins. Plant Cell 16:3084–3097.CrossRefPubMedGoogle Scholar
  4. Anderson JM (1992) Cytochrome-bf complex: dynamic molecular organization, function and acclimation. Photosynth Res 34:341–357.CrossRefGoogle Scholar
  5. Anderson JM, Chow WS, Goodchild DJ (1988) Thylakoid membrane organization in sun/shade acclimation. Aust J Plant Physiol 15:11–26.CrossRefGoogle Scholar
  6. Anderson JM, Price GD, Chow WS, Hope AB, Badger MR (1997) Reduced levels of cytochrome bf complex in transgenic tobacco leads to a marked photochemical reduction of the plastoquinone pool, without significant change in acclimation to irradiance. Photosynth Res 53:215–227.CrossRefGoogle Scholar
  7. Baena-Gonzalez E, Allahverdiyeva Y, Svab Z, Maliga P, Josse EM, Kuntz M, Mäenpää P, Aro EM (2003) Deletion of the tobacco plastid psbA gene triggers an upregulation of the thylakoid-associated NAD(P) H dehydrogenase complex and the plastid terminal oxidase (PTOX). Plant J 35:704–716.CrossRefPubMedGoogle Scholar
  8. Bailey S, Walters RG, Jansson S, Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213:794–801.CrossRefPubMedGoogle Scholar
  9. Balk J, Lobréaux S (2005) Biogenesis of iron–sulfur proteins in plants. Trends Plant Sci 10:324–331.CrossRefPubMedGoogle Scholar
  10. Barkan A, Walker M, Nolasco M, Johnson D (1994) A nuclear mutation in maize blocks the processing and translation of several chloroplast mRNAs and provides evidence for the differential translation of alternative mRNAs forms. EMBO J 13:3170–3181.PubMedGoogle Scholar
  11. Barneche F, Winter V, Crevecoeur M, Rochaix JD (2006) ATAB2 is a novel factor in the signalling pathway of light-controlled synthesis of photosystem proteins. EMBO J 25:5907–5918.CrossRefPubMedGoogle Scholar
  12. Bartsevich VV, Pakrasi HB (1997) Molecular identification of a novel protein that regulates biogenesis of photosystem I, a membrane protein complex. J Biol Chem 272:6382–6387.CrossRefPubMedGoogle Scholar
  13. Bock R (2006) Extranuclear inheritance: Gene transfer out of plastids. Prog Bot 67:75–98.CrossRefGoogle Scholar
  14. Borodich A, Rojdestvenski I, Cottam M (2003) Lateral heterogeneity of photosystems in thylakoid membranes studied by Brownian dynamics simulations. Biophys J 85:774–789.CrossRefPubMedGoogle Scholar
  15. Boudreau E, Takahashi Y, Lemieux C, Turmel M, Rochaix JD (1997) The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. EMBO J 16:6095–6104.CrossRefPubMedGoogle Scholar
  16. Choquet Y, Vallon O (2000) Synthesis, assembly and degradation of thylakoid membrane proteins. Biochimie 82:615–634.CrossRefPubMedGoogle Scholar
  17. Choquet Y, Wostrikoff K, Rimbault B, Zito F, Girard-Bascou J, Drapier D, Wollman FA (2001) Assembly-controlled regulation of chloroplast gene translation. Biochem Soc Trans 29:421–426.CrossRefPubMedGoogle Scholar
  18. Chow WS, Hope AB (2004) Kinetics of reactions around the cytochrome bf complex studied in intact leaf discs. Photosynth Res 81:153–163.CrossRefGoogle Scholar
  19. Chow WS, Kim EH, Horton P, Anderson JM (2005) Grana stacking of higher plant thylakoid membranes in higher plant chloroplasts: the physicochemical forces at work and the functional consequences that ensue. Photochem Photobiol Sci 4:1081–1090.CrossRefPubMedGoogle Scholar
  20. Dauvillée D, Stampacchia O, Girard-Bascou J, Rochaix JD (2003) Tab2 is a novel conserved RNA binding protein required for translation of the chloroplast psaB mRNA. EMBO J 23:6378–6388.CrossRefGoogle Scholar
  21. De la Torre W, Burkey KO (1990) Acclimation of barley to changes in light intensity: photosynthetic electron transport activity and components. Photosynth Res 24:127–136.Google Scholar
  22. Desikan R, Mackerness SAH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Phys 127:159–172.CrossRefGoogle Scholar
  23. Duran RV, Hervas M, De la Rosa MA, Navarro JA (2004) The efficient functioning of photosynthesis and respiration in Synechocystis sp. PCCC 6803 strictly requires the presence of either cytochrom c6 or plastocyanin. J Biol Chem 279:7229–7233.CrossRefPubMedGoogle Scholar
  24. Düring U, Irrgang KD, Lünser K, Kehr J, Wilde A (2006) Analysis of photosynthetic complexes from a cyanobacterial cyf37 mutant. Biochim Biophys Acta 1757:3–11.CrossRefGoogle Scholar
  25. Finazzi G, Sommer F, Hippler M (2005) Release of oxidized plastocyanin from photosystem I limits electron transfer between photosystem and cytochrome-b6f complex in vivo. Proc Natl Acad Sci USA 102:7031–7036.CrossRefPubMedGoogle Scholar
  26. Ganeteg U, Klimmek F, Jansson S (2005) Lhca5–an LHC-type protein associated with photosystem I. Plant Mol Biol 54:641–651.CrossRefGoogle Scholar
  27. Göhre V, Ossenbühl F, Crevecoeur M, Eichacker LA, Rochaix JD (2006) One of two alb3 proteins is essential for the assembly of the photosystems and for cell survival in Chlamydomonas. Plant Cell 18:1454–1466.CrossRefPubMedGoogle Scholar
  28. Gross J, Cho W, Lezhneva L, Falk J, Krupinska K, Shinozaki K, Seki M, Herrmann RG, Meurer J (2006) A plant locus essential for phylloquinone (vitamin K1) biosynthesis originated from a fusion of four eubacterial genes. J Biol Chem 281:17189–17196.CrossRefPubMedGoogle Scholar
  29. Haehnel W (1984) Photosynthetic electron transport in higher plants. Annu Rev Plant Physiol 35:659–693.CrossRefGoogle Scholar
  30. Haldrup A, Lunde C, Scheller HV (2003) Arabidopsis thaliana plants lacking the PSI-D subunit of photosystem I suffer severe photoinhibition, have unstable photosystem I complexes, and altered redox homeostasis in the chloroplast stroma. J Biol Chem 278:33276–33283.CrossRefPubMedGoogle Scholar
  31. Herranen M, Tyystjarvi T, Aro EM (2005) Regulation of photosystem I reaction center genes in Synechocystis sp strain PCC 6803 during light acclimation. Plant Cell Physiol 46:1484–1493.CrossRefPubMedGoogle Scholar
  32. Hiyama T, Ke B (1972) Difference spectra and extinction coefficients of P-700. Biochim Biophys Acta 267:14003–14010.Google Scholar
  33. Holtgrefe S, Bader KM, Horton P, Scheibe R, Schaewen A von, Backhausen JE (2003) Decreased content of leaf ferredoxin changes electron distribution and limits photosynthesis in transgenic potato plants. Plant Physol 133:1768–1778.CrossRefGoogle Scholar
  34. Hope AB (2000) Electron transfers amongst cytochrome f, plastocyanin and photosystem I: kinetics and mechanisms. Biochim Biophys Acta 1456:5–26.CrossRefPubMedGoogle Scholar
  35. Huang CY, Ayliffe MA, Timmis JN (2003) Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422:72–76.CrossRefPubMedGoogle Scholar
  36. Ihnatowicz A, Pesaresi P, Varotto C, Richly E, Schneider A, Jahns P, Salamini F, Leister D (2004) Mutants of photosystem I subunit D of Arabidopsis thaliana: effects on photosynthesis, photosystem I stability and expression of nuclear genes of chloroplast functions. Plant J 37:839–852.CrossRefPubMedGoogle Scholar
  37. Jensen PE, Haldrup A, Rosgaard L, Scheller HV (2003) Molecular dissection of photosystem I in higher plants: topology, structure and function. Physiol Plant 119:313–321.CrossRefGoogle Scholar
  38. Jiao S, Thornsberry JM, Elthon TE, Newton KJ (2005) Biochemical and molecular characterization of photosystem I deficiency in the NCS6 mutant of maize. Plant Mol Biol 57:303–313.CrossRefPubMedGoogle Scholar
  39. Jung YS, Vassiliev IR, Yu J, McIntosh L Goldbeck JH (1997) Strains of Synechocystis sp. PCC 6803 with altered PsaC. Part II. EPR and optical spectroscopic properties of FA and FB in aspartate, serine and alanine replacements of cysteines 14 and 51. J Biol Chem 272:8040–8049.CrossRefPubMedGoogle Scholar
  40. Khrouchtchova A, Hanson M, Paakkarinen V, Vainonen JP, Zhang S, Jensen PE, Scheller HV, Vener AV, Aro EM, Haldrup A (2005) A previously found thylakoid membrane protein of 14 kDa (TMP14) is a novel subunit of plant photosystem I and is designated PSI-P. FEBS Lett 579:4805–4812.CrossRefGoogle Scholar
  41. Kirchhoff H, Schöttler MA, Maurer J, Weis E (2004) Plastocyanin redox kinetics in spinach chloroplasts: evidence for disequilibrium in the high potential chain. Biochim Biophys Acta 1659:63–72.CrossRefPubMedGoogle Scholar
  42. Kuduh H, Sonoike K (2002) Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta 215:541–548.CrossRefGoogle Scholar
  43. Laloi C, Przybyla D, Apel K (2006) A genetic approach towards elucidating the biological activity of different reactive oxygen species in Arabidopsis thaliana. J Exp Bot 567:1719–1724.CrossRefGoogle Scholar
  44. Lezhneva L, Meurer J (2004) The nuclear factor HCF145 affects chloroplast psaA-psaB-rps14 transcript abundance in Arabidopsis thaliana. Plant J 38:740–753.CrossRefPubMedGoogle Scholar
  45. Lezhneva L, Amann K, Meurer J (2004) The universally conserved HCF101 protein is involved in the assembly of [4Fe-4S]-cluster containing complexes in Arabidopsis thaliana chloroplasts. Plant J 37:174–185.PubMedGoogle Scholar
  46. Li H, Sherman LA (2001) A redox-responsive regulator of photosynthesis gene expression in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriology 182:4268–4277.CrossRefGoogle Scholar
  47. Lohmann A, Schöttler MA, Bréhélin C, Kessler F, Bock R, Cahoon EB, Dörmann P (2006) Deficiency in phylloquinone (vitamin K1) methylation affects prenyl quinine distribution, photosystem I abundance, and anthocyanin accumulation in the Arabidopsis menG mutant. J Biol Chem 281:40461–40472.CrossRefPubMedGoogle Scholar
  48. Lucinski R, Schmid VH, Jansson S, Klimmek F (2006) Lhca5 interaction with plant photosystem I. FEBS Lett 580:6485–6488.CrossRefPubMedGoogle Scholar
  49. Lunde C, Jensen PE, Haldrup A, Knoetzel J, Scheller HV (2000) The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Nature 408:6153–6158.Google Scholar
  50. Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L, Kavanagh TA, Hibberd JM, Gray JC, Morden CW, Calie PJ, Jermiin LS, Wolfe KH (2001) Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13:645–658.CrossRefPubMedGoogle Scholar
  51. Minai L, Wostrikoff K, Wollman FA, Choquet Y (2006) Chloroplast biogenesis of photosystem II cores involves a series of assembly-controlled steps that regulate translation. Plant Cell 18:159–175.CrossRefPubMedGoogle Scholar
  52. Muramatsu M, Hihara Y (2003) Transcriptional regulation of genes encoding subunits of photosystem I during acclimation to high light conditions in Synechocystis sp. PC6803. Planta 216: 446–453.PubMedGoogle Scholar
  53. Murchie EH, Horton P (1998) Contrasting patterns of photosynthetic acclimation to the light environment are dependent on the differential expression of the responses to altered irradiance and spectral quality. Plant Cell Environ 21:139–148.CrossRefGoogle Scholar
  54. Naver H, Boudreau E, Rochaix JD (2001) Functional studies of Ycf3: its role in assembly of photosystem I and interactions with some of its subunits. Plant Cell 13:2731–2745.CrossRefPubMedGoogle Scholar
  55. Ort DR (2001) When there is too much light. Plant Physiol 125:29–32.CrossRefPubMedGoogle Scholar
  56. Ossenbühl F, Göhre V, Meurer J, Krieger-Liszkay A, Rochaix JD, Eichacker LA (2004) Efficient assembly of photosystem II in Chlamydomonas reinhardtii requires Alb 3.1p, a homolog of Arabidopsis Albino3. Plant Cell 16:1790–1800.CrossRefPubMedGoogle Scholar
  57. Pasch JC, Nickelsen J, Schünemann D (2005) The yeast split-ubiquitin system to study chloroplast membrane protein interactions. Appl Microbiol Biotechnol 69:440–447.CrossRefPubMedGoogle Scholar
  58. Pfannschmidt T, Nillson A, Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397:625–628.CrossRefGoogle Scholar
  59. Pilon M, Abdel-Ghany SE, Hoewyk D van, Ye H, Pilon-Smits EA (2006) Biogenesis of iro-sulfur cluster proteins in plastids. Genet Eng 27:101–117.CrossRefGoogle Scholar
  60. Plücken H, Müller B, Grohmann D, Westhoff P, Eichacker LA (2002) The HCF136 protein is essential for assembly of the photosystem II reaction center in Arabidopsis thaliana. FEBS Lett 532:85–90.CrossRefPubMedGoogle Scholar
  61. Rochaix JD (2006) Genetic dissection of photosystem I assembly and turnover in eukaryotes. In: Golbeck JH (ed) Photosystem I. The light-driven plastocyanin:ferredoxin oxidoreductase. (Advances in photosynthesis and respiration, vol 24), Springer, Berlin Heidelberg New York, pp 515–527.Google Scholar
  62. Ruf S, Kössel H, Bock R (1997) Targeted inactivation of a tobacco intro-containing open reading frame reveals a novel chloroplast-encoded photosystem I-related gene. J Cell Biol 139:95–102.CrossRefPubMedGoogle Scholar
  63. Savitch LV, Barker-Astrom J, Ivanov AG, Hurry V, Öquist V, Huner NPA, Gardestrom P (2001) Cold acclimation of Arabidopsis thaliana results in incomplete recovery of photosynthetic capacity, associated with an increased reduction of the chloroplast stroma. Planta 214:295–303.CrossRefPubMedGoogle Scholar
  64. Scheller HV, Haldrup A (2005) Photoinhibition of photosystem I. Planta 221:5–8.CrossRefPubMedGoogle Scholar
  65. Scherer S (1990) Do photosynthetic and respiratory electron transport chains share redox proteins? Trends Biol Sci 15:458–462.CrossRefGoogle Scholar
  66. Schmitz-Linneweber C, Williams-Carrier R, Barkan A (2005) RNA immunoprecipitation and microarray analysis show a chloroplast pentatricopeptide repeat protein to be associated with the 5a-region of mRNAs whose translation it activates. Plant Cell 17:2791–2804.CrossRefPubMedGoogle Scholar
  67. Schöttler MA, Kirchhoff H, Weis E (2004) The role of plastocyanin in the adjustment of the photosynthetic electron transport to the carbon metabolism in tobacco. Plant Physiol 136:4265–4274.CrossRefPubMedGoogle Scholar
  68. Schöttler MA, Flügel C, Thiele W, Stegemann S, Bock R (2007a) The plastome-encoded PsaJ subunit is required for efficient photosystem I excitation, but not for plastocyanin oxidation in tobacco. Biochem J (in press).Google Scholar
  69. Schöttler MA, Flügel C, Thiele W, Bock R (2007b) Knock-out of the plastid-encoded PetL subunit results in reduced stability and accelerated leaf-age dependent loss of the cytochrome b6f complex. J Biol Chem 282:976–985.CrossRefPubMedGoogle Scholar
  70. Schwabe T, Kruip J (2000) Biogenesis and assembly of photosystem I. Indian J Biochem Biol 37:351–359.Google Scholar
  71. Schwabe TM, Gloddek K, Schluesener D, Kruip J (2003) Purification of recombinant BtpA and Ycf3, proteins involved in membrane protein biogenesis in Synechocystis PCC 6803. J Chromatogr B Anal Technol Biomed Life Sci 786:45–59.CrossRefGoogle Scholar
  72. Setif P (2001) Ferredoxin and flavoredoxin reduction by photosystem I. Biochim Biophys Acta 1507:161–179.CrossRefPubMedGoogle Scholar
  73. Shen G, Golbeck JH (2006) Assembly of the bound iron-sulfur clusters in photosystem I. In: Golbeck JH (ed) Photosystem I. The light-driven plastocyanin:ferredoxin oxidoreductase. (Advances in photosynthesis and respiration, vol 24) Springer, Berlin Heidelberg New York, pp 529–547.Google Scholar
  74. Shen G, Zhao J, Reimer SK, Antonkine ML, Cai Q, Weiland SM, Golbeck JH, Bryant DA (2002a) Assembly of photosystem I. I. Inactivation of the rubA gene encoding a membrane-associated rubredoxin in the cyanobacterium Synechococcus sp. PCC7002 causes a loss of photosystem I activity. J Biol Chem 277:20343–20354.CrossRefPubMedGoogle Scholar
  75. Shen G, Antonkine ML, van der Est A, Vassiliev IR, Brettel K, Bittl R, Zech SG, Zhao J, Stehlik D, Bryant DA, Golbeck JH (2002b) Assembly of photosystem I. II. Rubredoxin is required for the in vivo assembly of F(X) in Synechococcus sp. PCC7002 as shown by optical and EPR spectroscopy. J Biol Chem 277:20355–20366.CrossRefPubMedGoogle Scholar
  76. Sherameti I, Nakamura M, Yamamoto YY, Pfannschmidt T, Obokata J, Oelmüller R (2002) Polyribosome loading of spinach mRNAs for photosystem I subunits is controlled by photosynthetic electron transport. Plant J 32:631–639.CrossRefPubMedGoogle Scholar
  77. Stampacchia O, Girard-Bascou J, Zanasco JL, Zerges W, Bennoun P, Rochaix JD (1997) A nuclear-encoded function essential for translation of the chloroplast psaB mRNA in Chlamydomonas. Plant Cell 9:773–782.CrossRefPubMedGoogle Scholar
  78. Stegemann S, Bock R (2006) Experimental reconstruction of functional gene transfer from the tobacco plastid genome to the nucleus. Plant Cell 18:2869–2878.CrossRefPubMedGoogle Scholar
  79. Stegemann S, Hartmann S, Ruf S, Bock R (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100:8828–8833.CrossRefPubMedGoogle Scholar
  80. Stöckel J, Oelmüller (2004) A novel protein for photosystem I biogenesis. J Biol Chem 279:10243–10251.CrossRefPubMedGoogle Scholar
  81. Stöckel J, Bennewitz S, Hein P, Oelmüller R (2006) The evolutionary conserved tetratrico peptide repeat protein Pale Yellow Green7 is required for photosystem I accumulation in Arabidopsis and copurifies with the complex. Plant Physiol 141:870–878.CrossRefPubMedGoogle Scholar
  82. Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–136.CrossRefPubMedGoogle Scholar
  83. Tjus SE, Lindberg Moller B, Scheller HV (1999) Photoinhibition of photosystem I damages both reaction centre proteins PSI-A and PSI-B and acceptor-side located small photosystem I polypeptides. Photosynth Res 60:75–86.CrossRefGoogle Scholar
  84. Touraine B, Boutin JP, Marion-Poll A, Briat JF, Peltier G, Lobréaux S (2004) Nfu2: a scaffold protein required for [4Fe-4S] and ferredoxin iron–sulphur cluster assembly in Arabidopsis thaliana. Plant J 40:101–111.CrossRefPubMedGoogle Scholar
  85. Van der Laan M, Nouven NP, Driessen AJM (2005) YidC–an evolutionary conserved device for the assembly of energy-transducing membrane protein complexes. Curr Opin Microbiol 8:182–187.CrossRefPubMedGoogle Scholar
  86. Whitmarsh J, Ort DR (1984) Stoichiometries of electron transport complexes in spinach chloroplasts. Arch Biochem Biophysiol 231:378–389.CrossRefGoogle Scholar
  87. Wilde A, Hartel H, Hübschmann T, Hoffmann P, Shestakov SV, Börner T (1995) Inactivation of Synechocystis sp strain PCC-6803 gene with homology to conserved chloroplast open reading frame-184 increases the photosystem-II to photosystem-I ratio. Plant Cell 7:649–658.CrossRefPubMedGoogle Scholar
  88. Wilde A, Lunser K, Ossenbühl F, Nickelsen J, Börner T (2001) Characterization of cyanobacterial Ycf37: mutation decreases the photosystem I content. Biochem J 357:211–216.CrossRefPubMedGoogle Scholar
  89. Wostrikoff K, Choquet Y, Wollman FA, Girard-Bascou J (2001) TCA1, a single nuclear-encoded translational activator specific for petA mRNA in Chlamydomonas reinhartii chloroplast. Genetics 159:119–132.PubMedGoogle Scholar
  90. Wostrikoff K, Girard-Bascou J, Wollman FA, Choquet Y (2004) Biogenesis of PSI involves a cascade of translational autoregulation in the chloroplast of Chlamydomonas. EMBO J 23:2696–2705.CrossRefPubMedGoogle Scholar
  91. Xu XM, Moller SG (2004) AtNAP7 is a plastidic SufC-like ATP-binding cassette/ATPase essential for Arabidopsis embryogenesis. Proc Natl Acad Sci USA 24:9143–9148.CrossRefGoogle Scholar
  92. Xu XM, Moller SG (2006) AtSufE is an essential activator of plastidic and mitochondrial desulfurases in Arabidopsis. EMBO J 25:900–909.CrossRefPubMedGoogle Scholar
  93. Xu XM, Adams S, Chua NH, Moller SG (2005) At NAP1 represents an atypical SufB protein in Arabidopsis plastids. J Biol Chem 280:6648–6654.CrossRefPubMedGoogle Scholar
  94. Yabe T, Morimoto K, Kikuchi S, Nishio K, Terashima I, Nakai M (2004) The Arabidopsis chloroplastic NifU-like protein CnfU, which can act as an iron–sulfur cluster scaffold protein, is required for biogenesis of ferredoxin and photosystem I. Plant Cell 16:993–1007.CrossRefPubMedGoogle Scholar
  95. Ye H, Garifullina GF, Abdel-Ghany SE, Zhang L, Pilon-Smits EAH, Pilon M (2005) The chloroplast NifS-like protein of Arabidopsis thaliana is required for iron–sulfur cluster formation in ferredoxin. Planta 220:602–608.CrossRefPubMedGoogle Scholar
  96. Yu J, Smart LB, Young YS, Golbeck J, McIntosh L (1995) Absence of PsaC subunit allows assembly of photosystem I core but prevents the binding of PsaD and PsaE in Synechocystis sp. PCC 6803. Plant Mol Biol 29:331–342.CrossRefPubMedGoogle Scholar
  97. Yu J, Vassiliev IR, Jung YS, Golbeck JH, McIntosh L (1997) Strains of Synechocystis sp. PCC 6803 with altered PsaC. Part I. Mutations incorporated in the cysteine ligands of the two (4Fe-4S)-clusters FA and FB of photosystem I. J Biol Chem 272:8032–8039.CrossRefPubMedGoogle Scholar
  98. Zak A, Pakrasi HB (2000) The BtpA protein stabilizes the reaction center proteins of photosystem I in the cyanobacterium Synechocystis sp. PCC 6803 at low temperatures. Plant Physiol 123:215–222.CrossRefPubMedGoogle Scholar
  99. Zak E, Norling B, Andersson B, Pakrasi HB (1999) Subcellular localisation of the BtpA protein in the cyanobacterium Synechocystis sp. PCC 6803. Eur J Biochem 261:311–316.CrossRefPubMedGoogle Scholar
  100. Zerges W (2000) Translation in chloroplasts. Biochemie 82:583–601.CrossRefGoogle Scholar
  101. Zhang S, Scheller HV (2004) Photoinhibition of photosystem I at chilling temperature and subsequent recovery in Arabidopsis thaliana. Plant Cell Physiol 45:1595–1602.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mark Aurel Schöttler
    • 1
  • Ralph Bock
    • 1
  1. 1.Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-GolmGermany

Personalised recommendations