Skip to main content

Crassulacean Acid Metabolism: a Cause or Consequence of Oxidative Stress in Planta?

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 69))

The photosynthetic specialization of crassulacean acid metabolism (CAM) is typically found in plants growing in environments where water and/or CO2 is limiting and, by analogy, where irradiance and daytime temperatures may be high. Such abiotic actors are known to lead to the generation of reactive oxygen species (ROS) in planta which can elicit potentially damaging oxidative stress and/or act as signals for engaging mechanisms that ameliorate oxidative stress. It has been proposed that CAM prevents the production of ROS, since the daytime CO2 concentrating effect prevents overenergization of the photosynthetic machinery under water-limited conditions. However, CAM per se has the potential to elevate the oxidative burden in planta as a consequence of sustained electron transport behind closed stomata, which can elevate internal O2 concentrations to around 42%. This review considers and discusses evidence for the photoprotective function of CAM, alongside considerations of the extent of photorespiration and other potential sinks for O2 consumption. Anti-oxidant metabolism in CAM species is also reviewed and considered along with the potential role of ROS in triggering the induction or up-regulation of this photosynthetic specialization in limiting environments. The overall aim of the review is to assess whether or not CAM alleviates the oxidative burden in plants exposed to potentially limiting environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams WW III, Osmond CB (1988) Internal CO2 supply during photosynthesis of sun and shade grown CAM plants in relation to photoinhibition. Plant Physiol 86:117–123.

    PubMed  Google Scholar 

  • Agostino A, Heldt HW, Hatch MD (1996) Mitochondrial respiration in relation to photosynthetic C4 acid decarboxylation in C4 species. Aust J Plant Physiol 23:1–7.

    Google Scholar 

  • Arron GP, Spalding MH, Edwards GE (1979) Isolation and oxidative properties of intact mitochondria from the leaves of Sedum praeltum, a crassulacean acid metabolism plant. Plant Physiol 64:182–186.

    PubMed  Google Scholar 

  • Asada K (2000) The water–water cycle as alternative photon and electron sinks. Phil Trans R Soc Lond B Biol Sci 355:1419–1431.

    Google Scholar 

  • Badger MR, Caemmerer S von, Ruuska S, Nakano H (2000) Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Phil Trans R Soc Lond B Biol Sci 355:1433–1446.

    Google Scholar 

  • Barker DH, Marszalek J, Zimpfer JF, Adams WW III (2004) Changes in photosynthetic pigment composition and absorbed energy allocation during salt stress and CAM induction in Mesembryanthemum crystallinum. Funct Plant Biol 31:781–787.

    Google Scholar 

  • Bendall DS, Manasse RS (1995) Cyclic photophosphorylation and electron transport. Biochim Biophys Acta 1410:248–261.

    Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence at 77K among plants of diverse origin. Planta 170:489–504.

    Google Scholar 

  • Borland AM, Griffiths H (1996) Variations in the phases of CAM and regulation of carboxylation patterns determined by carbon-isotope-discrimination techniques. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution. Springer, Berlin Heidelberg NewYork, pp 230–249.

    Google Scholar 

  • Borland AM, Griffiths H (1997) A comparative study on the regulation of C3 and C4 carboxylation processes in the constitutive CAM plant Kalanchoë daigremontiana and the C3–CAM intermediate Clusia minor. Planta 201:368–378.

    PubMed  Google Scholar 

  • Borland AM, Taybi T (2004) Synchronization of metabolic processes in plants with crassulacean acid metabolism. J Exp Bot 55:1255–1265.

    PubMed  Google Scholar 

  • Borland AM, Griffiths H, Broadmeadow MSJ, Fordham MC, Maxwell C (1993) Short-term changes in carbon isotope discrimination in the C3–CAM intermediate Clusia minor L. growing in Trinidad. Oecologia 95:444–453.

    Google Scholar 

  • Borland AM, Hartwell J, Jenkins GI, Wilkins MB, Nimmo HG (1999) Metabolite control over-rides circadian regulation of PEPc kinase and CO2 fixation in crassulacean acid metabolism (CAM). Plant Physiol 121:889–896.

    PubMed  Google Scholar 

  • Borland AM, Elliott S, Patterson S, Taybi T, Cushman J, Pater B, Barnes J (2006) Are the metabolic components of crassulacean acid metabolism up-regulated in response to an increase in oxidative burden? J Exp Bot 57:319–328.

    PubMed  Google Scholar 

  • Boxall SE, Foster JM, Bohnert HJ, Cushman JC, Nimmo HG, Hartwell J (2005) Conservation and divergence of circadian clock operation in a stress-inducible crassulacean acid metabolism species reveals clock compensation against stress. Plant Physiol 137:969–982.

    PubMed  Google Scholar 

  • Branco JB, Agarie S, Elliott S, Borland AM, Cushman JC (2003) Isolation and analysis of CAM-defective mutants in the common ice plant, Mesembryanthemum crystallinum. In: American Society of Plant Biologists (ed) ASPB Plant Biology 2003, ASPB, Honolulu, poster 403.

    Google Scholar 

  • Broetto F, Lüttge U, Ratajczak R (2002) Influence of light intensity and salt-treatment on mode of photosynthesis and enzymes of the antioxidative response system of Mesembryanthemum crystallinum. Funct Plant Biol 29:13–23.

    Google Scholar 

  • Castillo FJ (1996) Antioxidative protection in the inducible CAM plant Sedum album L. following the imposition of severe water stress and recovery. Oecologia 107:469–477.

    Google Scholar 

  • Chamnongpol S, Willekens H, Langebartels C, Van MontagueM, Inzé D, Van Camp W (1996) Transgenic tobacco with a reduced catalase activity develops necrotics lesions and induces pathogenesis-related expression under high light. Plant J 10:491–503.

    Google Scholar 

  • Chen L-S, Nose A (2003) Day–night changes of energy-rich compounds in crassulacean acid metabolism (CAM) species utilizing hexose and starch. Ann Bot 94:449–455.

    Google Scholar 

  • Cruz JA, Avenson TJ, Kanazawa A, Takizawa K, Edwards GE, Kramer DM (2005) Plasticity in light reactions of photosynthesis for energy production and photoprotection. J Exp Bot 56:395–406.

    PubMed  Google Scholar 

  • Cushman JC, Bohnert HJ (1997) Molecular genetics of crassulacean acid metabolism. Plant Physiol 113:667–676.

    PubMed  Google Scholar 

  • Cushman JC, Borland AM (2002) Induction of crassulacean acid metabolism by water limitation. Plant Cell Physiol 25:295–310.

    Google Scholar 

  • Dat JF, Pellinen R, Beckman T, Van de Cotte B, Langebartels C, Kangasjärvi J, Inzé D, Van Breusegem F (2003) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J 33:621–632.

    PubMed  Google Scholar 

  • Day DA (1980) Malate decarboxylation by Kalanchoë daigremontiana mitochondria and its role in crassulacean acid metabolism. Plant Physiol 65:675–679.

    PubMed  Google Scholar 

  • Drake BG, Azcon-Bieto J, Berry J, Bunce J, Dijkstra P, Farrar J, Gifford RM, Gonzales-Meler MA, Koch G, Lambers H, Siedow J, Wullschleger S (1999) Does elevated atmospheric CO2 concentration inhibit mitochondrial respiration in green plants? Plant Cell Environ 22:649–657.

    Google Scholar 

  • Duarte HM, Lüttge U (2007) Gas-exchange, photorespiration and spatio-temporal dynamics of relative quantum use efficiency in leaves of the C3-photosynthesis/crassulacean acid metabolism-intermediate species Clusia minor L. (Clusiaceae) in both modes of photosynthesis. Trees (in press).

    Google Scholar 

  • Edwards GE, Dai Z, Cheng SH, Ku MSB (1996) Factors affecting the induction of crassulacean acid metabolism in Mesembryanthemum crystallinum. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution. Springer, Berlin Heidelberg NewYork, pp 119–134.

    Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell and Environ 28:1056–1071.

    Google Scholar 

  • Fridyland LE, Backhausen JE, Scheibe R (1998) Flux control of the malate valve in leaf cells. Arch Biochem Biophys 349:290–298.

    Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Sci 4:436–442.

    Google Scholar 

  • Gil F (1986) Origin of CAM as an alternative photosynthetic carbon fixation pathway. Photosynthetica 29:494–507.

    Google Scholar 

  • Grams TEE, Haag-Kerwer A, Olivares E, Ball E, Arndt S, Popp M, Medina E, Lüttge U (1997) Comparative measurements of chlorophyll a fluorescence, acid accumulation and gas exchange in exposed and shaded plants of Clusia minor L and Clusia multiflora HBK in the field. Trees Struct Funct 11:240–247.

    Google Scholar 

  • Griffiths H (1989) Carbon dioxide concentrating mechanisms and the evolution of CAM in vascular epiphytes. In: Lüttge U (ed) Vascular plants as epiphytes. Springer, Berlin Heidelberg New York, pp 42–86.

    Google Scholar 

  • Griffiths H, Helliker B, Roberts A, Haslam RP, Girnus J, Robe WE, Borland AM, Maxwell K (2002) Regulation of Rubisco activity in crassulacean acid metabolism plants: better late than never. Funct Plant Biol 29:689–696.

    Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants, redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322.

    PubMed  Google Scholar 

  • Hanning I, Heldt HW (1993) On the function of mitochondrial metabolism during photosynthesis in spinach (Spinacia oleracea L.) leaves (partitioning between respiration and export of redox equivalents and precursors for nitrate assimilation products). Plant Physiol 103:1147–1154.

    PubMed  Google Scholar 

  • Heber U (2002) Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynth Res 73:223–231.

    PubMed  Google Scholar 

  • Heber U, Neimanis S, Kaiser WM (1996) Regulation of crassulacean acid metabolism in Kalanchoë pinnata as studied by gas exchange and measurements of chlorophyll fluorescence. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution. Springer, Berlin Heidelberg NewYork, pp 78–96.

    Google Scholar 

  • Holtum JAM, Smith JAC, Neuhaus HE (2005) Intracellular transport and pathway of carbon flow in plants with crassulacean acid metabolism. Funct Plant Biol 32:429–449.

    Google Scholar 

  • Horton P, Ruban A (1994) The role of light-harvesting complex II in energy quenching. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis. From molecular mechanisms to the field. Bios Scientific, London, pp 111–128.

    Google Scholar 

  • Horton P, Ruban A, Walters R (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684.

    PubMed  Google Scholar 

  • Hurst AC, Grams TEE, Ratajczak R (2004) Effects of salinity, high irradiance, ozone, and ethylene on mode of photosynthesis, oxidative stress and oxidative damage in the C-3/CAM intermediate plant Mesembryanthemum crystallinum L. Plant Cell Environ 27:187–197.

    Google Scholar 

  • Igamberdiev AU, Bykova NV, Lea PJ, Gardeström P (2001) The role of photorespiration in redox and energy balance of photosynthetic plant cells: a study with a barley mutant deficient in glycine decarboxylase. Physiol Plant 111:427–438.

    PubMed  Google Scholar 

  • Jensen RG (2000) Activation of Rubisco regulates photosynthesis at high temperature and CO2. Proc Natl Acad Sci USA 97:12937–12938.

    PubMed  Google Scholar 

  • Keiller DR, Slocombe SP, Cockburn W (1994) Analysis of chlorophyll-a fluoresence in C3 and CAM forms of Mesembryanthemum crystallinum. J Exp Bot 45:325–334.

    Google Scholar 

  • Kore-eda S, Cushman MA, Akselrod I, Bufford D, Fredrickson M, Clark E, Cushman JC (2004) Transcript profiling of salinity stress responses by large-scale expressed sequence tag analysis in Mesembryanthemum crystallinum. Gene 341:83–92.

    PubMed  Google Scholar 

  • Köster S, Winter K (1985) Light scattering as an indicator of the energy state in leaves of the crassulacean acid metabolism plant Kalanchoë pinnata. Plant Physiol 79:520–524.

    PubMed  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560.

    Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 42:313–349.

    Google Scholar 

  • Kubicki A, Funk E, Westhoff P, Steinmüller K (1996) Differential expression of plastome-encoded ndh genes in mesophyll and bundle-sheath chloroplasts of the C4 plant Sorghum bicolor indicates that the complex I-homologous NAD(P) H-plastoquinone oxidoreductase is involved in cyclic electron transport. Planta 199:276–281.

    Google Scholar 

  • Lis R van, Atteia A (2004) Control of mitochondrial function via photosynthetic redox signals. Photosynth Res 79:133–148.

    PubMed  Google Scholar 

  • Lu C, Qiu N, Lu Q, Wang B, Kuang T (2003) PSII photochemistry, thermal energy dissipation, and the xanthophyll cycle in Kalanchoë daigremontiana exposed to a combination of water stress and high light. Physiol Plant 118:173–182.

    Google Scholar 

  • Lüttge U (2000) Light-stress and crassulacean acid metabolism. Phyton Annu Rev Bot 40:65–82.

    Google Scholar 

  • Lüttge U (2002) CO2-concentrating: consequences in crassulacean acid metabolism. J Exp Bot 53:2131–2142.

    PubMed  Google Scholar 

  • Lüttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652.

    PubMed  Google Scholar 

  • Lüttge U (2007) Photosynthesis. In: Lüttge U (ed) Clusia. A woody neotropical genus of remarkable plasticity and diversity. (Ecological studies, vol 194) Springer, Berlin Heidelberg New York, pp 135–186.

    Google Scholar 

  • Mattos EA de, Herzog B, Lüttge U (1999) Chlorophyll fluorescence during CAM-phases in Clusia minor L. under stress. J Exp Bot 50:253–262.

    Google Scholar 

  • Maxwell K (2002) Resistance is useful: diurnal patterns of photosynthesis in C3 and crassulacean acid metabolism epiphytic bromeliads. Funct Plant Biol 29:679–697.

    Google Scholar 

  • Maxwell K, Caemmerer S von, Evans JR (1997) Is a low internal conductance to CO2 diffusion a consequence of succulence in plants with crassulacean acid metabolism? Aust J Plant Physiol 24:777–786.

    Google Scholar 

  • Maxwell K, Badger MR, Osmond CB (1998) A comparison of CO2 and O2 exchange patterns and the relationship with chlorophyll fluorescence during photosynthesis in C3 and CAM plants. Aust J Plant Physiol 25:45–52.

    Google Scholar 

  • Maxwell DP, Wang Y, McIntosh L (1999a) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 96:8271–8276.

    PubMed  Google Scholar 

  • Maxwell K, Borland AM, Haslam RP, Helliker BR, Roberts A, Griffiths H (1999b) Modulation of Rubisco activity during the diurnal phases of the crassulacean acid metabolism plant Kalanchoe daigremontiana. Plant Physiol 121:849–856.

    PubMed  Google Scholar 

  • Millenaar FF, Lambers H (2003) The alternative oxidase: in vivo regulation and function. Plant Biol 5:2–15.

    Google Scholar 

  • Miszalski Z, S´lesak I, Niewiadomska E, Baczek-Kwinta R, Lüttge U, Ratajczak R (1998) Subcellular localization and stress response of superoxide dismutase isoform from leaves in the C3–CAM intermediate halophyte Mesembryanthemum crystallinum L. Plant Cell Environ 21:169–179.

    Google Scholar 

  • Miszalski Z, Niewiadomska E, S´lesak I, Lüttge U, Kluge M, Ratajczak R (2001) The effect of irradiance on carboxylating/decarboxylating enzymes and fumarase activities in Mesembryanthemum crystallinum L. leaves exposed to salinity stress. Plant Biol 3:17–23.

    Google Scholar 

  • Miszalski Z, Kornas´ A, Gawros´ska K, S´lesak I, Niewiadomska E, Kruk J, Christian AL, Fisher-Schliebs E, Krisch R, Lüttge U (2006) Superoxide dismutase activity in C3 and C3/CAM intermediate species of Clusia. Biol Plant 51:86–92.

    Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Breusegem F van (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498.

    PubMed  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566.

    PubMed  Google Scholar 

  • Niewiadomska E, Miszalski Z, S´lesak I, Ratajczak R (1999) Catalase activity during C3–CAM transition in Mesembryanthemum crystallinum L. leaves. Free Radic Res 31:S251–S256.

    PubMed  Google Scholar 

  • Niewiadomska E, Pater B, Miszalski Z (2002) Does ozone induce a C3–CAM transition in Mesembryanthemum crystallinum leaves? Phyton 42:69–78.

    Google Scholar 

  • Niewiadomska E, Karpinska B, Romanowska E, S´lesak I, Karpinski S (2004) A salinity-induced C3–CAM transition increases energy conservation in the halophyte Mesembryanthemum crystallinum L. Plant Cell Physiol 45:789–794.

    PubMed  Google Scholar 

  • Nixon PJ, Mullineaux CW (2001) Regulation of photosynthetic electron transport. In: Aro E-M, Andersson B (eds) Regulation of photosynthesis. Kluwer Academic, Dordrecht, pp 533–555.

    Google Scholar 

  • Niyogi KK (2000) Safety valves for photosynthesis. Curr Opin Plant Biol 3:455–460.

    PubMed  Google Scholar 

  • Nobel PS (1991) Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants. New Phytol 119:183–205.

    Google Scholar 

  • Noctor G, Foyer CH (1998) A reevaluation of the ATP:NADPH budget during C3 photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity. J Exp Bot 49:1895–1908.

    Google Scholar 

  • Noctor G, Dutilleul C, De Paepe R, Foyer CH (2004) Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism. J Exp Bot 55:49–57.

    PubMed  Google Scholar 

  • Noguchi K, Go C-S, Terashima I, Ueda S, Yoshinari T (2001) Activities of the cyanide-resistant respiratory pathway in leaves of sun and shade species. Aust J Plant Physiol 28:27–35.

    Google Scholar 

  • Osmond CB (1994) What is photoinhibition? Some insights from comparisons of shade and sun plants. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis. From molecular mechanisms to the field. Bios Scientific, London, pp 1–24.

    Google Scholar 

  • Osmond CB (2006) Crassulacean acid metabolism: now and then. In: Esser K, Lüttge UE, Beyschlag W, Murata J (eds) Progress in botany, vol 68. Springer, Berlin Heidelberg New York, pp 3–34.

    Google Scholar 

  • Osmond CB, Grace SC (1995) Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis. J Exp Bot 46:1351–1362.

    Google Scholar 

  • Osmond B, Maxwell K, Popp M, Robinson S (1999) On being thick: fathoming apparently futile pathways of photosynthesis and carbohydrate metabolism in succulent CAM plants In: Bryant JA, Burrell MM, Kruger NJ (eds) Plant carbohydrate biochemistry. Bios, Oxford, pp 183–200.

    Google Scholar 

  • Overmyer K, Brosché M, Kangasjärvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:337–342.

    Google Scholar 

  • Padmasree K, Padmavathi L, Raghavendra AS (2002) Essentiality of mitochondrial oxidative metabolism for photosynthesis: optimization of carbon assimilation and protection against photoinhibition. Crit Rev Biochem Mol Biol 37:71–119.

    PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349.

    PubMed  Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129:460–468.

    PubMed  Google Scholar 

  • Peckmann K, Herppich WB (1998) Effects of short-term drought and rewatering on the activity of mitochondrial enzymes and the oxidative capacity of leaf mitochondria from a CAM plant, Aptenia cordifolia. J Plant Physiol 152:518–524.

    Google Scholar 

  • Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53:523–550.

    PubMed  Google Scholar 

  • Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 8:33–421.

    PubMed  Google Scholar 

  • Pieters J, Tezara W, Herrera A (2003) Operation of the xanthophyll cycle and degradation of D1 protein in the inducible CAM plant, Talinum triangulare, under water deficit. Ann Bot 92:393–399.

    PubMed  Google Scholar 

  • Portis AR (2003) Rubisco activase–Rubisco’s catalytic chaperone. Photosynth Res 75:11–27.

    PubMed  Google Scholar 

  • Portis AR, Salvucci ME (2002) The discovery of Rubisco activase–yet another story of serendipity. Photosynth Res 73:257–264.

    Google Scholar 

  • Raghavendra AS, Reumann S, Heldt HW (1998) Participation of mitochondrial metabolism in photorespiration. Plant Physiol 116:1333–1337.

    PubMed  Google Scholar 

  • Robinson SA, Yakir D, Ribas-Carbo M, Giles L, Osmond CB, Siedow JN, Berry JA (1992) Measurements of engagement of cyanide-resistant respiration in the crassulacean acid metabolism plant Kalanchoe daigremontiana with the use of on-line oxygen isotope discrimination. Plant Physiol 100:1087–1091.

    PubMed  Google Scholar 

  • Ruban AV, Wentworth M, Horton P (2001) Kinetic analysis of nonphotochemical quenching of chlorophyll fluorescence. 1. Isolated chloroplasts. Biochemistry 40:9896–9901.

    PubMed  Google Scholar 

  • Rustin P, Queiroz-Claret C (1980) Changes in the oxidative properties of Kalanchoë blossfeldiana leaf mitochondria during development of crassulacean acid metabolism. Planta 164:415–422.

    Google Scholar 

  • Ruuska S, Badger M, Andrews T, Caemmerer S von (2000) Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: little evidence for significant Mehler reaction. J Exp Bot 51:357–368.

    PubMed  Google Scholar 

  • Scheibe R (2004) Malate valves to balance cellular energy supply. Physiol Plant 120:21–26.

    PubMed  Google Scholar 

  • Schöttler MA, Kirchhoff H, Siebke K, Weis E (2002) Metabolic control of photosynthetic electron transport in crassulacean acid metabolism-induced Mesembryanthemum crystallinum. Funct Plant Biol 29:697–705.

    Google Scholar 

  • Skillman JB, Winter K (1997) High photosynthetic capacity in a shade-tolerant crassulacean acid metabolism plant–implications for sunfleck use, nonphotochemical energy dissipation, and susceptibility to photoinhibition. Plant Physiol 113:441–450.

    PubMed  Google Scholar 

  • Skillman JB, Garcia M, Virgo A, Winter K (2005) Growth irradiance effects on photosynthesis and growth in two co-occurring shade-tolerant neotropical perennials of contrasting photosynthetic pathways. Am J Bot 92:1811–1819.

    Google Scholar 

  • S´lesak I, Miszalski Z, Karpinska B, Niewiadomska E, Ratajczak R, Karpinski S (2002) Redox control of oxidative stress responses in the C3–CAM intermediate plant Mesembryanthemum crystallinum. Plant Physiol Biochem 40:669–677.

    Google Scholar 

  • S´lesak I, Karpinska B, Surówka E, Miszalski Z, Karpinski S (2003) Redox changes in the chloroplast and hydrogen peroxide are essential for regulation of C3–CAM transition and photooxidative stress responses in the facultative CAM plant Mesembryanthemum crystallinum L. Plant Cell Physiol 44:573–581.

    Google Scholar 

  • Spalding MH, Stumpf DK, Ku MSB, Burris RH, Edwards GE (1979) Crassulacean acid metabolism and diel variations of internal CO2 and O2 concentrations in Sedum praeltum DC. Aust J Plant Physiol 6:557–567.

    Google Scholar 

  • Streb P, Josse E-M, Gallouët E, Baptist F, Kuntz M, Cornic G (2005) Evidence for alternative electron sinks to photosynthetic carbon assimilation in the high mountain plant species Ranunculus glacialis. Plant Cell Environ 28:1123–1135.

    Google Scholar 

  • Surówka E, Karolewski P, Niewiadomska E, Libik M, Miszalski Z (2006) The antioxidative response of Mesembryanthemum crystallinum plants to exogenous SO2 application. Plant Sci 172:76–82.

    Google Scholar 

  • Whiteside DG, Rogers WJ, Tobin AK (1991) Photorespiratory enzyme activities in C3 and CAM forms of the facultative CAM plant, Mesembryanthemum crystallinum L. J Exp Bot 42:485–492.

    Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inzé D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16:4806–4816.

    PubMed  Google Scholar 

  • Wingler A, Quick WP, Bungard RA, Bailey KJ, Lea PJ, Leegood RC (1999) The role of photorespiration during drought stress: an analysis utilizing barley mutants with reduced activities of photorespiratory enzymes. Plant Cell Environ 22:361–373.

    Google Scholar 

  • Winter K, Smith JAC (1996a) An introduction to crassulacean acid metabolism. Biochemical principles and ecophysiological diversity. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution. Springer, Berlin Heidelberg NewYork, pp 1–13.

    Google Scholar 

  • Winter K, Smith JAC (1996b) Crassulacean acid metabolism: current status and perspectives. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution. Springer, Berlin Heidelberg NewYork, pp 389–426.

    Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Niewiadomska, E., Borland, A.M. (2008). Crassulacean Acid Metabolism: a Cause or Consequence of Oxidative Stress in Planta?. In: Lüttge, U., Beyschlag, W., Murata, J. (eds) Progress in Botany. Progress in Botany, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72954-9_10

Download citation

Publish with us

Policies and ethics