Skip to main content

Ecophysiology: Migrations Between Different Levels of Scaling

  • Chapter

Part of the book series: Progress in Botany ((BOTANY,volume 69))

Causal explanation of the mechanisms behind ecological adaptation in plants requires research on different levels of scaling, ranging from molecules to plants in their natural environment. In the following article this is illustrated by a description of the author's scientific life-work mainly with respect to the crassulacean acid metabolism (CAM) and research on Geosiphon, an endosymbiotic consortium of a fungus and a cyanobacterium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ball E, Hann J, Kluge M, Lee H S J, Lüttge U, Orthen B, Popp M, Schmitt A and Ting IP (1991) Ecophysiological comportment of the tropical CAM-tree Clusia in the field. II. Modes of photosynthesis in trees and seedlings. New Phytol 117:483–491.

    Article  Google Scholar 

  • Behzadipour M, Ratajczak R, Faist K, Pawlitschek P, Trémolières A, Kluge M (1998) Phenotypic adaptation of tonoplast fluidity to growth temperature in the CAM Plant Kalanchoë daigremontiana Ham. et Per. is accompanied by changes in the membrane phospholipid and protein composition. J Membr Biol 166:61–70.

    Article  PubMed  Google Scholar 

  • Bilger W, Büdel B, Mollenhauer R, Mollenhauer D (1994) Photosynthetic activity of two developmental stages of a Nostoc strain (Cyanobacteria) isolated from Geosiphon pyriforme (Mycota). J Phycol 30:225–230.

    Article  Google Scholar 

  • Boiteau P, Allorge-Boiteau L (1995) Kalanchoe (Crassulaceés) de Madagascar. Karthala, Paris.

    Google Scholar 

  • Böcher M, Kluge M (1978) Der C4-Weg der CO2-Fixierung bei Spinacea oleracea. II. Pulse-chase Experimente mit suspendierten Blattstreifen. Z Pflanzenphysiol 86:405–421.

    Google Scholar 

  • Brulfert J, Müller D, Kluge M, Queiroz O (1982) Photoperiodism and crassulacean acid metabolism I: Immunological and kinetic evidences for different patterns of phosphoenolpyruvate carboxylase isoforms in photoperiodically inducible and non-inducible crassulacean acid metabolism plants. Planta 154:326–331.

    Article  Google Scholar 

  • Brulfert J, Vidal J, Le Marechal P, Gadal P, Queiroz O, Kluge M, Krüger I (1986) Phosphorylation–dephosphorylation process as a probable mechanism for the diurnal regulatory changes of phosphoenolpyruvate carboxylase in CAM plants. Biochem Biophys Res Commun 136:151–159.

    Article  PubMed  Google Scholar 

  • Buchanan-Bollig IC, Kluge M, Müller D (1984) Kinetic changes with temperature of phosphoenolpyruvate carboxylase from a CAM plant. Plant Cell Environment 7:63–70.

    Article  Google Scholar 

  • Cockburn W, Ting IP, Sternberg CO (1979) Relationship between stomatal behavior and internal carbon dioxide concentration in crassulacean acid metabolism plants. Plant Physiol 63:1029–1032.

    Article  PubMed  Google Scholar 

  • Cushman JG, Bohnert B (1999) Molecular genetics of crassulacean acid metabolism. Annu Rev Plant Physiol Plant Mol Biol 50:305–332.

    Article  PubMed  Google Scholar 

  • Friemert V, Heininger D, Kluge M, Ziegler H (1988) Temperature effects on malic-acid efflux from the vacuoles and on the carboxylation pathways in CAM Plants. Planta 174:453–461.

    Article  Google Scholar 

  • Gehrig H, Taybi T, Kluge M, Brulfert J (1995) Identification of multiple PEPC iso-genes in leaves of the facultative crassulacean acid metabolism (CAM) plant Kalanchoë blossfeldiana Poelln. cv Tom Thumb. FEBS Lett 377:399–402.

    Article  PubMed  Google Scholar 

  • Gehrig H, Schüßler A, Kluge M (1996) Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (Cyanobacteria), is an ancestral member of the Glomales: evidence by SSUrRNA analysis. J Mol Evol 43:71–78.

    Article  PubMed  Google Scholar 

  • Gehrig H, Rösicke H, Kluge M (1997) Detection of DNA polymorphism in the genus Kalanchoë by RAPD-PCR fingerprint and its relationships to infrageneric taxonomic position and ecophysiological photosynthetic behaviour of the species. Plant Sci 125:41–51.

    Article  Google Scholar 

  • Gehrig H, Faist K, Kluge M (1998a) Identification of phosphoenolpyruvate carboxylase isoforms in leaf, stem and roots of the obligate CAM plant Vanilla planifolia Salib. (Orchidaceae): a physiological and molecular approach. Plant Mol Biol 38:1215–1223.

    Article  PubMed  Google Scholar 

  • Gehrig H, Heute V, Kluge M (1998b) Towards a better knowledge of the molecular evolution of phosphoenolpyruvate carboxylase by comparison of partial c-DNA sequences. J Mol Evol 46:107–114.

    Article  PubMed  Google Scholar 

  • Gehrig H, Gaußmann O, Marx H, Schwarzott D, Kluge M (2001a) Molecular phylogeny of the genus Kalanchoe (Crassulaceae) inferred from nucleotide sequences of the ITS 1 and ITS 2 region. Plant Sci 160:827–835.

    Article  PubMed  Google Scholar 

  • Gehrig H, Heute V, Kluge M (2001b) New partial sequences of phosphoenolpyruvatecarboxylase as molecular phylogenetic markers. Mol Phyl Evol 20:262–274.

    Article  Google Scholar 

  • Goh JC, Kluge M (1989) Gas exchange and water relations in epiphytic orchids. Ecol Stud 76:139–166.

    Google Scholar 

  • Grams TEE, Kluge M, Lüttge U (1995) High temperature adapted plants Kalanchoe daigremontiana show changes in the temperature dependence of the endogenous CAM rhythm. J Exp Bot 46:1927–1929.

    Article  Google Scholar 

  • James TY, et al (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822.

    Article  PubMed  Google Scholar 

  • Kliemchen A, Schomburg M, Galla H-J, Lüttge U, Kluge M (1989) Phenotypic changes in the fluidity of the tonoplast membrane of crassulacean acid metabolism plants in response to temperature and salinity stress. Planta 189:403–409.

    Article  Google Scholar 

  • Kluge M (1968a) Untersuchungen über den Gaswechsel von Bryophyllum während der Lichtperiode. I. Zum Problem der CO2-Abgabe. Planta 80:255–263.

    Article  Google Scholar 

  • Kluge M (1968b) Untersuchungen über den Gaswechsel von Bryophyllum während der Lichtperiode. II. Beziehungen zwischen dem Malatgehalt des Gewebes und der CO2-Aufnahme. Planta 80:359–377.

    Article  Google Scholar 

  • Kluge M (1969a) Zur Analyse des CO2-Austausches von Bryophyllum. II. Hemmung des nächtlichen Stärkeabbaus in CO2-verarmter Atmosphäre. Planta 86:142–150.

    Article  Google Scholar 

  • Kluge M (1969b) Veränderliche Markierungsmuster bei 14CO2-Fütterung von Bryophyllum tubiflorum zu verschiedenen Zeitpunkten der Hell-Dunkel-Periode. I. Die Fütterung unter Belichtung. Planta 88:113–129.

    Article  Google Scholar 

  • Kluge M (1971) Veränderliche Markierungsmuster bei 14CO2-Fütterung von Bryophyllum tubiflorum zu verschiedenen Zeitpunkten der Hell-Dunkel-Periode. II. Beziehungen zwischen dem Malatgehalt des Gewebes und dem Markiermuster nach 14CO2-Lichfixierung. Planta 98:20–30.

    Article  Google Scholar 

  • Kluge M (1977) Regulation of carbon dioxide fixation in plants. Proc Symp Soc Exp Biol 31:155–175.

    Google Scholar 

  • Kluge M (2005) Options of photosynthesis in the genus Kalanchoe: an approach integrating the levels of biochemistry, ecophysiology, molecular taxonomy and phytogeographic distribution of the species. Nova Acta Leopold 92:195–205.

    Google Scholar 

  • Kluge M, Brulfert J (1996) Crassulacean acid metabolism in the genus Kalanchoë: ecological, physiological and biological approaches. In: Winter K, Smith AP, Smith JAC (eds) Crassulacean acid metabolism. biochemistry, ecophysiology and evolution. Springer, Berlin Heidelberg New York, pp 324–335.

    Google Scholar 

  • Kluge M, Fischer K (1967) Über Zusammenhänge zwischen dem CO2-Austausch und der Abgabe von Wasserdampf durch Bryophyllum daigremontianum. Planta 77:212–223.

    Article  Google Scholar 

  • Kluge M, Heininger B (1973) Untersuchungen an Bryophyllum über den Efflux von Malat aus den Vakuolen der assimilierenden Zellen und mögliche Einflüsse dieses Vorgangs auf den CAM. Planta 113:333–343.

    Article  Google Scholar 

  • Kluge M, Osmond CB (1971) Pyruvat-Pi-dikinase in crassulacean acid metabolism. Naturwissenschaften 58:414–415.

    Article  Google Scholar 

  • Kluge M, Osmond CB (1972) Studies on PEP-carboxylase and other enzymes involved in crassulacean acid metabolism of Bryophyllum tubiflorum and Sedum praealtum. Z Pflanzenphysiol 66:97–105.

    Google Scholar 

  • Kluge M, Ting IP (1978) Crassulacean acid metabolism. Ecol Stud 30:3.

    Google Scholar 

  • Kluge M, Böcher M, Jungnickel G (1980) Metabolic control of crassulacean acid metabolism: evidence for diurnal changing sensitivity against inhibition by malate of PEP-carboxylase in Kalanchoë tubiflora Hamet. Z Pflanzenphysiol 97:197–204.

    Google Scholar 

  • Kluge M, Böhlke C, Queiroz O (1981a) Crassulacean acid metabolism in Kalanchoë: variations of the intercellular CO2 concentration during a normal CAM cycle, and during cycles with either light or darkness only. Planta 152:87–92.

    Article  Google Scholar 

  • Kluge M, Brulfert J, Queiroz O (1981b) Further evidence for diurnal changes in regulatory properties of PEP-carboxylase in crassulacean acid metabolism (CAM). Plant Cell Environment 4:251–256.

    Google Scholar 

  • Kluge M, Friemert V, Ong BL, Brulfert J, Goh JC (1989) In situ studies of crassulacean acid metabolism in Drymoglossum piloselloides, an epiphytic fern of the humid tropics. J Exp Bot 40:441–452.

    Article  Google Scholar 

  • Kluge M, Brulfert J, Ravelomanana D, Lipp J, Ziegler H (1991a) Crassulacean acid metabolism in Kalanchoë species collected at various climatic zones of Madagascar: a survey by 13C analysis. Oecologia 88:407–414.

    Article  Google Scholar 

  • Kluge M, Kliemchen A, Galla H-J (1991b) Temperature effects on crassulacean acid metabolism: EPR spectroscopic studies on the thermotropic phase behaviour of the tonoplast membranes Kalanchoë daigremontiana. Bot Acta 104:355–360.

    Google Scholar 

  • Kluge M, Mollenhauer D, Mollenhauer R (1991c) Photosynthetic carbon assimilation in Geosiphon pyriforme (Kützing) F. v. Wettstein, an endosymbiotic association of fungus with a cyanobacterium. Planta 185:311–315.

    Article  Google Scholar 

  • Kluge M, Wolf H, Fischer A (1991d) Crassulacean acid metabolism: temperature effects on the lag-phase in the photosynthetic oxygen evolution occurring at the outset of the light period. Plant Physiol Biochem 29:83–90.

    Google Scholar 

  • Kluge M, Mollenhauer D, Mollenhauer R, Kape R (1992) Geosiphon pyriforme, an endosymbiotic consortium of a fungus and a cyanobacterium (Nostoc), fixes nitrogen. Bot Acta 105:343–344.

    Google Scholar 

  • Kluge M, Brulfert J, Lipp J, Ravelomanana D, Ziegler H (1993) A comparative study by K13C-analysis of crassulacean acid metabolism (CAM) in Kalanchoë daigremontiana (Crassulaceae) species of Africa and Madagascar. Bot Acta 106:320–324.

    Google Scholar 

  • Kluge M, Mollenhauer D, Mollenhauer R (1994) Geosiphon pyriforme (Kützing) von Wettstein, a promising system for studying endocyanoses. Prog Bot 55:5.

    Google Scholar 

  • Kluge M, Brulfert J, Rauh W, Ravalomanana D, Ziegler H (1995) Ecophysiological studies on the vegetation of Madagascar: 13C and CD survey for incidence of crassulacean acid metabolism (CAM) among orchids from montane forests and succulents from the xerophytic thorn-bush. Isotopes Environ Health Stud 31:191–210.

    Article  Google Scholar 

  • Kluge M, Gehrig H, Mollenhauer D, Mollenhauer R, Schnepf E, Schüßler A (1997) News on Geosiphon pyriforme, an endocytobiotic consortium of a fungus with a cyanobacterium. In: Schenk HEA, Herrmann R, Jeon KW, Müller NE, Schwemmler W (eds) Eukaryotism and symbiosis: intertaxonic combination versus symbiotic adaptation. Springer, Berlin Heidelberg New York, pp 469–476.

    Google Scholar 

  • Kluge M, Razanoelisoa B, Brulfert J (2001) Implications of genotypic diversity and phenotypic plasticity in the ecophysiological success of CAM plants, examined by studies on the vegetation of Madagascar. Plant Biol 3:214–222.

    Article  Google Scholar 

  • Kluge M, Mollenhauer D, Wolf E, Schüßler A (2002) The Geosiphon/Nostoc endocytobiosis. In: Rai AN, Bergmann B, Rasmussen M (eds) Cyanobacterian symbiosis. Kluwer, Dordrecht, pp 19–30.

    Google Scholar 

  • Lüttge U (1997) Physiological ecology of tropical plants. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Lüttge U (2000) The tonoplast functioning as the master switch for circadian regulation of crassulacean acid metabolism. Planta 211:761–769.

    Article  PubMed  Google Scholar 

  • Lüttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652.

    Article  PubMed  Google Scholar 

  • Lüttge U, Smith JAC (1984) Mechanism of passive malic-acid efflux from vacuoles of the CAM plant Kalanchoe daigremontiana. J Membr Biol 81:149–158.

    Article  Google Scholar 

  • Lüttge U, Kluge M, Ball E (1975) Effects of osmotic gradients on vacuolar malic storage. A basic principle in oscillatory behaviour of crassulacean acid metabolism. Plant Physiol 56:613–616.

    Article  PubMed  Google Scholar 

  • Lüttge U, Kluge M, Bauer G (2005) Botanik, 5th edn. Wiley–VCH, Weinheim.

    Google Scholar 

  • Maetz M, Schüßler A, Wallianos A, Traxel A (1999) Subcellular trace element distribution in Geosiphon pyriforme. Nucl Instrum Methods B 150:200–207.

    Article  Google Scholar 

  • Mollenhauer D (1988) Weitere Untersuchungen an Geosiphon pryriforme- einer Lebensgemeins chaft von Pilz und Blaualge. Nat Mus 118:289–309.

    Google Scholar 

  • Mollenhauer D, Mollenhauer R (1988) Geosiphon cultures ahead. Endocyt Res 5:69–73.

    Google Scholar 

  • Mollenhauer D, Mollenhauer R, Kluge M (1996) Studies on initiation and development of the partner association in Geosiphon pyriforme (Kütz) v. Wettstein, a unique endocytobiotic system of a fungus (Glomales) and the cyanobacterium Nostoc punctiforme. (Kütz) Harriot. Protoplasma 193:3–9.

    Article  Google Scholar 

  • Nimmo GA, Nimmo HG, Hamilton ID, Fewson CA, Wilkins MB (1986) Purification of the phosphorylated night form and dephosphorylated day form of phosphoenolpyruvate carboxylase from Bryophyllum fedtschenkoi. Biochem J 239:213–220.

    PubMed  Google Scholar 

  • Nimmo HG (2000) The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci 5:75–80.

    Article  PubMed  Google Scholar 

  • Nishida K (1963) Studies on stomatal movement of crassulacean plants in relation to the acid metabolism: Physiol Plant 16:281–298.

    Google Scholar 

  • Nungesser D, Kluge M, Tolle H, Oppelt W (1984) A dynamic computer model of the metabolic and regulatory processes in CAM. Planta 162:204–214.

    Article  Google Scholar 

  • Ong BL, Kluge M, Friemert V (1986) Crassulacean acid metabolism in the epiphytic ferns Drymoglossum piloselloides and Pyrrosia longifolia: studies on the response to environmental signals. Plant Cell Environ 9:547–557.

    Google Scholar 

  • Osmond CB (1978) Crassulaceen acid metabolism: a curiosity in context. Annu Rev Plant Physiol 29:379–414.

    Article  Google Scholar 

  • Osmond CB (2007) Crassulaceae acid metabolism: now and then. Prog Bot 68:3–32.

    Article  Google Scholar 

  • Queiroz O (1966) Recherche d’un modéle enzymatique pour le déterminisme de la désacidification diurne chez les Crassulacees. C R Acad Sci 265:1928–1931.

    Google Scholar 

  • Queiroz O (1979) CAM: rhythms of enzyme capacity and activity as adaptive mechanisms. In: Gibbs M, Latzko E (eds) Encyclopedia of plant physiology, photosynthesis II, vol 6. Springer, Berlin Heidelberg New York, pp 263–270.

    Google Scholar 

  • Queiroz O, Queiroz-Claret C (1992) Seasonal and daily control of enzyme synthesis and activity by circadian clocks. In: Tuitou Y, Hans E (eds) Biological in clinical and laboratory medicine. Springer, Berlin heidelberg New York, pp 78–89.

    Google Scholar 

  • Raschke K (1966) Die Reaktionen des CO2-Regelsystems in den Schließzellen von Zea mays auf weißes Licht. Planta 68:111–140.

    Article  Google Scholar 

  • Ritz D, Kluge M, Veith HJ (1987) Effect of temperature and CO2-concentration on malate accumulation during CAM: evidence by 13C-mass spectrometry. Plant Physiol Biochem 25:391–399.

    Google Scholar 

  • Schnepf E (1964) Zur Feinstruktur von Geosiphon pyriforme. Arch Mikrobiol 49:112–131.

    Article  Google Scholar 

  • Schomburg M, Kluge M (1994) Phenotypic adaptation to elevated temperatures of tonoplast fluidity in the CAM plant Kalanchoë daigremontiana is caused by membrane proteine. Bot Acta 107:328–332.

    Google Scholar 

  • Schuber M, Kluge M (1981) In situ studies on crassulacean acid metabolism in Sedum acre L. and Sedum mite Gil. Oecologia 50:82–87.

    Article  Google Scholar 

  • Schüßler A (2002) Molecular pylogeny, taxonomy and evolution of Geosiphon pyriformis and arbuscular myccorrhizal fungi. Plant Soil 244:75–83.

    Article  Google Scholar 

  • Schüßler A, Kluge M (2001) Geosiphon pyriforme, an endocytosymbiosis between fungus and cyanobacteria, and its meaning as a model system for AM research. In: Hock B (ed) The Mycota IX. Springer, Berlin Heidelberg New York, pp 151–161.

    Google Scholar 

  • Schüßler A, Mollenhauer D, Schnepf E, Kluge M (1994) Geosiphon pyriforme, an endosymbiotic association of fungus and cyanobacteria: the spore structure resembles that of mycorrhizal (VAM) fungi. Bot Acta 107:36–45.

    Google Scholar 

  • Schüßler A, Meyer T, Gehrig H, Kluge M (1997) Variations of lectin binding sites in extracellular glycoconjugates during the life cycle of Nostoc punctiforme, a potentially endosymbiotic cyanobacterium. Eur J Phycol 32:233–239.

    Article  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421.

    Article  Google Scholar 

  • Schüßler A, Martin H, Cohen D, Fitz M, Wipf D (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936.

    Article  PubMed  Google Scholar 

  • Szarek SR, Ting IP (1975) Physiological responses to rainfall in Opuntia basilaris. Am J Bot 62:602–609.

    Article  Google Scholar 

  • Willert DJ von, Willert K von (1979) Light modulation of the activity of the PEP-carboxylase in CAM plants of the Mesembryanthemaceae. Z Pflanzenphysiol 95:42–49.

    Google Scholar 

  • Winter K (1980) Day/night changes in the sensitivity of phosphoenolpyruvate carboxylase to malate during crassulacean acid metabolism. Plant Physiol 65:792–796.

    Article  PubMed  Google Scholar 

  • Winter K, Smith JAC (1996) Crassulacean acid metabolism; biochemistry, ecophysiology and evolution. (Ecological Studies, vol 114). Springer, Berlin Heidelberg New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kluge, M. (2008). Ecophysiology: Migrations Between Different Levels of Scaling. In: Lüttge, U., Beyschlag, W., Murata, J. (eds) Progress in Botany. Progress in Botany, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72954-9_1

Download citation

Publish with us

Policies and ethics