Skip to main content

A Self-stabilizing Algorithm for the Median Problem in Partial Rectangular Grids and Their Relatives

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4474))

  • 545 Accesses

Abstract

Given a graph G = (V,E), a vertex v of G is a median vertex if it minimizes the sum of the distances to all other vertices of G. The median problem consists in finding the set of all median vertices of G. In this note, we present a self-stabilizing algorithm for the median problem in partial rectangular grids. Our algorithm is based on the fact that partial rectangular grids can be isometrically embedded into the Cartesian product of two trees, to which we apply the algorithm proposed by Antonoiu, Srimani (1999) and Bruell, Ghosh, Karaata, Pemmaraju (1999) for computing the medians in trees. Then we extend our approach from partial rectangular grids to plane quadrangulations.

The first and the fourth authors were partly supported by the ANR grant BLAN06-1-138894 (projet OPTICOMB). The second and the third authors were supported by the ACI grant “Jeunes Chercheurs”(TAGADA project).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afek, Y., Kutten, S., Yung, M.: The Local Detection Paradigm and its Applications to Self-Stabilization. Theor. Comput. Sci. 186, 199–229 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aggarwal, S., Kutten, S.: Time optimal self-stabilizing spanning tree algorithm. In: Shyamasundar, R.K. (ed.) FSTTCS 1993. LNCS, vol. 761, pp. 400–410. Springer, Heidelberg (1993)

    Google Scholar 

  3. Antonoiu, G., Srimani, P.K.: A self-stabilizing distributed algorithm to find the median of a tree graph. J. Comput. Syst. Sci. 58, 215–221 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Antonoiu, G., Srimani, P.K.: Distributed self-stabilizing algorithm for minimum spanning tree construction. In: Lengauer, C., Griebl, M., Gorlatch, S. (eds.) Euro-Par 1997. LNCS, vol. 1300, pp. 480–487. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  5. Awerbuch, B., et al.: Time optimal self-stabilizing synchronization. In: STOC’93, pp. 652–661 (1993)

    Google Scholar 

  6. Bandelt, H.-J., Barthélemy, J.-P.: Medians in median graphs. Discr. Appl. Math. 8, 131–142 (1984)

    Article  MATH  Google Scholar 

  7. Bandelt, H.-J., Chepoi, V., Eppstein, D.: Ramified rectilinear polygons (in preparation)

    Google Scholar 

  8. Barthélemy, J.-P., Monjardet, B.: The median procedure in cluster analysis and social choice theory. Math. Soc. Sci. 1, 235–268 (1981)

    Article  MATH  Google Scholar 

  9. Buckley, F., Harary, F.: Distances in Graphs. Addison-Wesley, Redwood City (1990)

    Google Scholar 

  10. Blair, J.R.S., Manne, F.: Efficient self-stabilizing algorithms for tree networks. Tech. Rept. 232, Univ. Bergen (2002)

    Google Scholar 

  11. Bruell, S.B., et al.: Self-stabilizing algorithms for finding centers and medians of trees. SIAM J. Computing 29, 600–614 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boldi, P., Vigna, S.: An effective characterization of computability in anonymous networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 33–47. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Chalopin, J.: Algorithmique Distribuée, Calculs Locaux et Homomorphismes de Graphes, PhD Thesis Université Bordeaux I (2006)

    Google Scholar 

  14. Chepoi, V.: Graphs of some CAT(0) complexes. Adv. Appl. Math. 24, 125–179 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chepoi, V., Dragan, F., Vaxès, Y.: Addressing, distances and routing in triangular systems with applications in cellular and sensor networks. Wireless Networks 12, 671–679 (2006)

    Article  Google Scholar 

  16. Chepoi, V., Fanciullini, C., Vaxès, Y.: Median problem in some plane triangulations and quadrangulations. Comput. Geom. 27, 193–210 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Datta, A.K., et al.: Stabilizing hierarchical routing. J. Interconnexion Networks 1, 283–302 (2000)

    Article  Google Scholar 

  18. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Comm. ACM 17, 643–644 (1974)

    Article  MATH  Google Scholar 

  19. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  20. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming only read/write atomicity. In: PODC’90, pp. 103–118 (1990)

    Google Scholar 

  21. Flocchini, P., Mans, B., Santoro, N.: Sense of direction: formal definitions and properties. In: SIROCCO’95, pp. 9–34 (1995)

    Google Scholar 

  22. Gärtner, F.: A survey of self-stabilizing spanning-tree construction algorithms (2003)

    Google Scholar 

  23. Gerstel, O., Zaks, S.: A new characterization of tree medians with applications to distributed algorithms. Networks 24, 23–29 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ghosh, S., Gupta, A., Pemmaraju, S.V.: A self-stabilizing algorithm for the maximum flow problem. Distributed Computing 10, 167–180 (1997)

    Article  Google Scholar 

  25. Goldman, A.J., Witzgall, C.J.: A localization theorem for optimal facility placement. Transp. Sci. 4, 406–409 (1970)

    MathSciNet  Google Scholar 

  26. Herman, T., Ghosh, S.: Stabilizing phase-clocks. Inf. Process. Lett. 54, 259–265 (1995)

    Article  MATH  Google Scholar 

  27. Korach, E., Rotem, D., Santoro, N.: Distributed algorithms for finding centers and medians in networks. ACM Trans. Program. Lang. Syst. 6, 380–401 (1984)

    Article  MATH  Google Scholar 

  28. Nesterenko, M., Mizuno, M.: A quorum-based self-stabilizing distributed mutual exclusion algorithm. J. Parallel Distrib. Comput. 62, 284–305 (2002)

    Article  MATH  Google Scholar 

  29. Tansel, B.C., Francis, R.L., Lowe, T.J.: Location on networks: a survey. Management Sci. 29, 482–511 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Giuseppe Prencipe Shmuel Zaks

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Chepoi, V., Fevat, T., Godard, E., Vaxès, Y. (2007). A Self-stabilizing Algorithm for the Median Problem in Partial Rectangular Grids and Their Relatives. In: Prencipe, G., Zaks, S. (eds) Structural Information and Communication Complexity. SIROCCO 2007. Lecture Notes in Computer Science, vol 4474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72951-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72951-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72918-1

  • Online ISBN: 978-3-540-72951-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics