Advertisement

Robots and Demons (The Code of the Origins)

  • Yoann Dieudonné
  • Franck Petit
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4475)

Abstract

In this paper, we explain how Robert Langdon, a famous Harvard Professor of Religious Symbology, brought us to decipher the Code of the Origins. We first formalize the problem to be solved to understand the Code of the Origins. We call it the Scatter Problem (SP). We then show that the SP cannot be deterministically solved. Next, we propose a randomized algorithm for this problem. The proposed solution is trivially self-stabilizing. We then show how to design a self-stabilizing version of any deterministic solution for the Pattern Formation and the Gathering problems.

Keywords

Fun with distributed algorithms fun with mobile robot networks fun with stabilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: A distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Transaction on Robotics and Automation 15(5), 818–828 (1999)CrossRefGoogle Scholar
  2. 2.
    Aurenhammer, F.: Voronoi diagrams- a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)CrossRefGoogle Scholar
  3. 3.
    Brown, D.: Angels and Demons. Pocket Star (2001)Google Scholar
  4. 4.
    Brown, D.: Da Vinci Code. Doubleday (2003)Google Scholar
  5. 5.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Cieliebak, M., Prencipe, G.: Gathering autonomous mobile robots. In: 9th International Colloquium on Structural Information and Communication Complexity (SIROCCO 9), pp. 57–72 (2002)Google Scholar
  7. 7.
    Defago, X., Konagaya, A.: Circle formation for oblivious anonymous mobile robots with no common sense of orientation. In: 2nd ACM International Annual Workshop on Principles of Mobile Computing (POMC 2002), pp. 97–104. ACM Press, New York (2002)CrossRefGoogle Scholar
  8. 8.
    Dieudonné, Y., Labbani, O., Petit, F.: Circle formation of weak mobile robots. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 262–275. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Dieudonné, Y., Petit, F.: Circle formation of weak robots and Lyndon words. Information Processing Letters 104(4), 156–162 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dieudonné, Y., Petit, F.: Swing words to make circle formation quiescent. In: Fourteenth Colloquium on Structural Information and Communication Complexity (SIROCCO ’07), Springer, Heidelberg (2007)Google Scholar
  11. 11.
    Dijkstra, E.W.: Self stabilizing systems in spite of distributed control. Communications of the Association of the Computing Machinery 17, 643–644 (1974)CrossRefzbMATHGoogle Scholar
  12. 12.
    Dolev, S.: Self-Stabilization. The MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  13. 13.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard tasks for weak robots: The role of common knowledge in pattern formation by autonomous mobile robots. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 93–102. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of autonomous mobile robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Pattern formation by autonomous robots without chirality. In: VIII International Colloquium on Structural Information and Communication Complexity (SIROCCO 2001), pp. 147–162 (2001)Google Scholar
  16. 16.
    Herman, T.: Private communication (2006)Google Scholar
  17. 17.
    Katreniak, B.: Biangular circle formation by asynchronous mobile robots. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 185–199. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Prencipe, G.: Corda: Distributed coordination of a set of autonomous mobile robots. In: ERSADS 2001, pp. 185–190 (2001)Google Scholar
  19. 19.
    Prencipe, G.: Instantaneous actions vs. full asynchronicity: Controlling and coordinating a set of autonomous mobile robots. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 185–190. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Suzuki, I., Yamashita, M.: Agreement on a common x-y coordinate system by a group of mobile robots. Intelligent Robots: Sensing, Modeling and Planning, pp. 305–321 (1996)Google Scholar
  21. 21.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots - formation of geometric patterns. SIAM Journal of Computing 28(4), 1347–1363 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Yoann Dieudonné
    • 1
  • Franck Petit
    • 1
  1. 1.LaRIA CNRS, Université de Picardie Jules Verne, AmiensFrance

Personalised recommendations