Skip to main content

Open-Source Environment for Interactive Finite Element Modeling of Optimal ICD Electrode Placement

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2007)

Abstract

Placement of Implantable Cardiac Defibrillator (ICD) leads in children and some adults is challenging due to anatomical factors. As a result, novel ad hoc non-transvenous implant techniques have been employed clinically. We describe an open-source subject-specific, image-based finite element modeling software environment whose long term goal is determining optimal electrode placement in special populations of adults and children Segmented image-based finite element models of two children and one adult were created from CT scans and appropriate tissue conductivities were assigned. The environment incorporates an interactive electrode placement system with a library of clinically-based, user-configurable electrodes. Finite element models are created from the electrode poses within the torsos and the resulting electric fields, current, and voltages computed and visualized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3D Slicer: Medical Visualization and Processing Environment for Research (2004)

    Google Scholar 

  2. SCIRun: A Scientific Computing Problem Solving Environment (2002)

    Google Scholar 

  3. Aguel, F., Eason, J.C., Trayanova, N.A., et al.: Impact of Transvenous Lead Position on Active-can ICD Defibrillation: A Computer Simulation Study. PACE 22, 158 (1999)

    Google Scholar 

  4. Alcott, G., Hunter, F., Ideker, R.: Principles of defibrillation: Cellular physiology to fields and waveforms. In: Clinical Cardiac Pacing and Defibrillation. 2nd edn. Saunders, Philadelphia (2000)

    Google Scholar 

  5. Alexander, M.E., Cecchin, F., Walsh, E.P., et al.: Implications of Implantable Cardioverter Defibrillator Therapy in Congenital Heart Disease and Pediatrics. J. Cardiovasc. Electrophysiol. 15, 72 (2004)

    Article  Google Scholar 

  6. Bar-Cohen, Y., Berul, C.I., Alexander, M.E., et al.: Age, Size, and Lead Factors Alone do Not Predict Venous Obstruction in Children and Young Adults with Transvenous Lead Systems. J. Cardiovasc. Electrophysiol. 17, 754 (2006)

    Article  Google Scholar 

  7. Berul, C.I., Triedman, J.K., Forbess, J., et al.: Minimally Invasive Cardioverter Defibrillator Implantation for Children: An Animal Model and Pediatric Case Report. PACE 24, 1789 (2001)

    Google Scholar 

  8. Bokhari, F., Newman, D., Greene, M., et al.: Long-Term Comparison of the Implantable Cardioverter Defibrillator Versus Amiodarone: Eleven-Year Follow-Up of a Subset of Patients in the Canadian Implantable Defibrillator Study (CIDS). Circulation 110, 112 (2004)

    Article  Google Scholar 

  9. Buxton, A.E., Lee, K.L., Fisher, J.D., et al.: A Randomized Study of the Prevention of Sudden Death in Patients with Coronary Artery Disease. Multicenter Unsustained Tachycardia Trial Investigators. The New Eng. J. Med. 341, 1882 (1999)

    Article  Google Scholar 

  10. Cannon, B.C., Friedman, R.A., Fenrich, A.L., et al.: Innovative Techniques for Placement of Implantable Cardioverter-Defibrillator Leads in Patients with Limited Venous Access to the Heart. PACE 29, 181 (2006)

    Google Scholar 

  11. de Jongh, A.L., Entcheva, E.G., Replogle, J.A., et al.: Defibrillation Efficacy of Different Electrode Placements in a Human Thorax Model. PACE 22, 152 (1999)

    Google Scholar 

  12. Frazier, D.W., Wolf, P.D., Wharton, J.M., et al.: Stimulus-Induced Critical Point. Mechanism for Electrical Initiation of Reentry in Normal Canine Myocardium. J. Clin. Invest. 83, 1039–1052 (1989)

    Article  Google Scholar 

  13. Gold, M.R., Olsovsky, M.R., DeGroot, P.J., et al.: Optimization of Transvenous Coil Position for Active can Defibrillation Thresholds. J. Cardiovasc. Electrophysiol. 11, 25 (2000)

    Article  Google Scholar 

  14. Jorgenson, D.B., Haynor, D.R., Bardy, G.H., et al.: Computational Studies of Transthoracic and Transvenous Defibrillation in a Detailed 3-D Human Thorax Model. IEEE Trans. Biol. Engin. 42, 172 (1995)

    Article  Google Scholar 

  15. Jorgenson, D.B., Schimpf, P.H., Shen, I., et al.: Predicting Cardiothoracic Voltages during High Energy Shocks: Methodology and Comparison of Experimental to Finite Element Model Data. IEEE Trans. Biol. Engin. 42, 559 (1995)

    Article  Google Scholar 

  16. Khairy, P., Landzberg, M.J., Gatzoulis, M.A., et al.: Transvenous Pacing Leads and Systemic Thromboemboli in Patients with Intracardiac Shunts: A Multicenter Study. Circulation 113, 2391–2397 (2006)

    Article  Google Scholar 

  17. Kindlmann, G.: TEEM: Tools to Process and Visualize Scientific Data and Images (2005)

    Google Scholar 

  18. Kriebel, T., Ruschewski, W., Paul, T.: Implantation of an “Extracardiac” Internal Cardioverter Defibrillator in a 6-Month-Old Infant. Zeitschrift fur Kardiologie 94, 415 (2005)

    Article  Google Scholar 

  19. Kugler, J.D., Erickson, C.C.: Nontransvenous Implantable Cardioverter Defibrillator Systems: Not just for Small Pediatric Patients. J. Cardiovasc. Electrophysiol. 17, 47 (2006)

    Article  Google Scholar 

  20. Mocanu, D., Kettenbach, J., Sweeney, M.O. et al.: A Comparison of Biventricular and Conventional Transvenous Defibrillation: A Computational Study using Patient Derived Models. PACE 27, 586 (2004)

    Google Scholar 

  21. Mocanu, D., Kettenbach, J., Sweeney, M.O., et al.: Patient-Specific Computational Analysis of Transvenous Defibrillation: A Comparison to Clinical Metrics in Humans. Ann. Biomed. Engin. 32, 775 (2004)

    Article  Google Scholar 

  22. Moss, A.J., Hall, W.J., Cannom, D.S., et al.: Improved Survival with an Implanted Defibrillator in Patients with Coronary Disease at High Risk for Ventricular Arrhythmia. Multicenter Automatic Defibrillator Implantation Trial Investigators. The New Eng. J. Med. 335, 1933 (1996)

    Article  Google Scholar 

  23. Schreiber, C., Eicken, A.: Nonthoracotomy Cardioverter Defibrillator Implantation in Infants. Resuscitation 69, 350 (2006)

    Article  Google Scholar 

  24. Stephenson, E.A., Batra, A.S., Knilans, T.K., et al.: A Multicenter Experience with Novel Implantable Cardioverter Defibrillator Configurations in the Pediatric and Congenital Heart Disease Population. J. Cardiovasc. Electrophysiol. 17, 41 (2006)

    Article  Google Scholar 

  25. Tang, A.S., Wolf, P.D., Afework, Y., et al.: Three-Dimensional Potential Gradient Fields Generated by Intracardiac Catheter and Cutaneous Patch Electrodes. Circulation 85, 1857–1864 (1992)

    Google Scholar 

  26. Zhang, Y., Bajaj, C.: Adaptive and Quality quadrilateral/hexahedral Meshing from Volumetric Data. Computation Methods in Applied Mechanical Engineering 195, 942–960 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhou, X., Daubert, J.P., Wolf, P.D., et al.: Epicardial Mapping of Ventricular Defibrillation with Monophasic and Biphasic Shocks in Dogs. Circ. Res. 72, 145–160 (1993)

    Google Scholar 

  28. Zipes, D.P., Fischer, J., King, R.M., et al.: Termination of Ventricular Fibrillation in Dogs by Depolarizing a Critical Amount of Myocardium. Am. J. Cardio. 36, 37 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank B. Sachse Gunnar Seemann

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Jolley, M. et al. (2007). Open-Source Environment for Interactive Finite Element Modeling of Optimal ICD Electrode Placement. In: Sachse, F.B., Seemann, G. (eds) Functional Imaging and Modeling of the Heart. FIMH 2007. Lecture Notes in Computer Science, vol 4466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72907-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72907-5_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72906-8

  • Online ISBN: 978-3-540-72907-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics