Skip to main content

Towards the Numerical Simulation of Electrocardiograms

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4466))

Abstract

We present preliminary results of the numerical simulation of electrocardiograms (ECG). We consider the bidomain equations to model the electrical activity of the heart and a Laplace equation for the torso. The ionic activity is modeled with a Mitchell-Schaeffer dynamics. We use adaptive semi-implicit BDF schemes for the time discretization and a Neumann-Robin domain decomposition algorithm for the space discretization. The obtained ECGs, although not completely satisfactory, are promising. They allow to discuss various modelling assumptions, for example the relevance of cells heterogeneity, the fiber orientation and the coupling conditions with the torso.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boulakia, M., Fernández, M.A., Gerbeau, J.-F., Zemzemi, N.: Mathematical analysis of a coupled bidomain-torso model in electrophysiology (Submitted)

    Google Scholar 

  2. Colli Franzone, P., Pavarino, L.F.: A parallel solver for reaction-diffusion systems in computational electrocardiology. Math. Models Methods Appl. Sci. 6(14), 883–911 (2004)

    Article  Google Scholar 

  3. Colli Franzone, P., Pavarino, L.F., Taccardi, B.: Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models. Math. Biosci. 1(197), 35–66 (2005)

    Article  Google Scholar 

  4. Colli Franzone, P., Savaré, G.: Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level. evolution equations, semigroups and functional analysis. Progr. Nonlin. Diff. Eq. Appl. 1(50), 49–78 (2002)

    Google Scholar 

  5. Coudière, Y., Pierre, C., Turpault, R.: Solving the fully coupled heart and torso problems of electrocardiology with a 3d discrete duality finite volume method. submitted (2006)

    Google Scholar 

  6. Djabella, K., Sorine, M.: Differential model of the excitation-contraction coupling in a cardiac cell for multicycle simulations. In: EMBEC’05, vol. 11, pp. 4185–4190, Prague (2005)

    Google Scholar 

  7. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. (1), 445–465 (1961)

    Google Scholar 

  8. Frey, P.: Yams: A fully automatic adaptive isotropic surface remeshing procedure. Technical report 0252, Inria, Rocquencourt, France (November 2001)

    Google Scholar 

  9. George, P.L.: Improvement on delaunay based 3d automatic mesh generator. Finite Elements in Analysis and Design 25(3-4), 297–317 (1997)

    Article  MATH  Google Scholar 

  10. George, P.L., Borouchaki, H.: ultimate robustness in meshing an arbitrary polyhedron. Int. J. Numer. Meth. Engng. 58(7), 1061–1089 (2002)

    Article  Google Scholar 

  11. Krassowska, W., Neu, J.C.: Effective boundary conditions for syncitial tissues. IEEE Trans. Biomed. Eng. 2(41), 137–199 (1994)

    Google Scholar 

  12. Lines, G.: Simulating the electrical activity in the heart. PhD thesis, Department of Informatics, University of Olso (1999)

    Google Scholar 

  13. Luo, C.H., Rudy, Y.: A model of the ventricular cardiac action ptentiel. depolarisation, repolarisation, and their interaction. Cir. Res. (68),1071–1096 (1994)

    Google Scholar 

  14. Malmivuo, J., Plonsey, R.: Bioelectromagnetism. principles and applications of bioelectric and biomagnetic fields. Oxford University Press, New York (1995)

    Google Scholar 

  15. Mitchell, C.C., Schaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bulletin Math. Bio. (65),767–793 (2003)

    Google Scholar 

  16. Neu, J.C., Krassowska, W.: Homogenization of syncytial tissues. Crit. Rev. Biomed. Eng. 21(2), 137–199 (1993)

    Google Scholar 

  17. Page, E.: Cat heart muscle in vitro. part iii. the extracellular space. J. Gen. Physio. 1(46), 201–213 (1962)

    Article  Google Scholar 

  18. Pierre, C.: Modélisation et simulation de l’activité électrique du cœur dans le thorax, analyse numérique et méthodes de volumes finis. PhD thesis, Laboratoire J. Leray, Université de Nantes (2005)

    Google Scholar 

  19. Quarteroni, A., Sacco, R., Saleri, F.: Numerical mathematics. In: Texts in Applied Mathematics, 2nd edn. vol. 37, Springer, Heidelberg (2007)

    Google Scholar 

  20. Sachse, F.B.: Computational Cardiology: Modeling of Anatomy, Electrophysiology, and Mechanics. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  21. Sampson, K.J., Henriquez, C.S.: Electrotonic influences on action potential duration dispersion in small hearts: a simulation study. Am. J. Physiol. Heart Circ. Physiol. 289, 350–360 (2005)

    Article  Google Scholar 

  22. Sermesant, M., Moireau, P., Camara, O., J., S.-M., Andriantsimiavona, R., Cimrman, R., Hill, D.L., Chapelle, D., Razavi, R.: Cardiac function estimation from mri using a heart model and data assimilation: advances and difficulties. Med. Image Anal. 10(4), 642–656 (2006)

    Article  Google Scholar 

  23. Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.-A., Tveito, A.: Computing the electrical activity in the heart. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  24. van Capelle, F.H., Durrer, D.: Computer simulation of arrhythmias in a network of coupled excitable elements. Circ. Res. 47, 453–466 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank B. Sachse Gunnar Seemann

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Boulakia, M., Fernández, M.A., Gerbeau, JF., Zemzemi, N. (2007). Towards the Numerical Simulation of Electrocardiograms. In: Sachse, F.B., Seemann, G. (eds) Functional Imaging and Modeling of the Heart. FIMH 2007. Lecture Notes in Computer Science, vol 4466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72907-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72907-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72906-8

  • Online ISBN: 978-3-540-72907-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics