Efficient Linkable Ring Signatures and Threshold Signatures from Linear Feedback Shift Register

  • Xiangxue Li
  • Dong Zheng
  • Kefei Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4494)


For many practical usages or resource-limited environments, it is often desirable to speed up the cryptographic systems without any security lost. Linkable ring signature is a kind of signatures which can simultaneously provide the properties of anonymity, spontaneity as well as linkability. Threshold signature is a useful tool for decentralizing the power to sign a message by distributed computing. The paper presents linkable ring signatures and threshold signatures using n-th order characteristic sequences generated by a linear feedback shift register (LFSR). Our schemes enjoy the following attractive features: (i) main computation operations are performed in GF(q); and (ii) security properties rely on the difficulty of solving the state based discrete logarithm problem(S-DLP) and on state based decisional Diffie-Hellman(S-DDH) assumption. Since the complexity of breaking S-DLP(S-DDHP, resp.) is computationally equivalent to that of solving traditional DLP(DDHP, resp.) in GF(q n ), the proposed schemes successfully enhance the security of the system and meanwhile maintain low computational costs. All these make our schemes more flexible.


characteristic sequence linear feedback shift-register linkable ring signature threshold signature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the Gap-Diffie-Hellman group signature scheme. In: Proceedings of the 6th International Workshop on Practice and Theory in Public Key Cryptography (PKC 2003) Miami, FL, USA, pp. 31–46 ( 2003)Google Scholar
  2. 2.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)Google Scholar
  4. 4.
    Desmedt, Y.: Threshold cryptography. European Transactions on Telecommunications 5(4), 449–457 (1994)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Giuliani, K., Gong, G.: New LFSR-based cryptosystems and the trace discrete logrithm problem (Trace-DLP). In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 298–312. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Golomb, S.: Shift register sequences. Laguna Hills, CA, Aegean Park (1982)Google Scholar
  7. 7.
    Gong, G., Harn, L.: Public-key cryptosystems based on cubic finite field extensions. IEEE Transaction on Information Theory 24, 2601–2605 (1998)MathSciNetGoogle Scholar
  8. 8.
    Lenstra, A., Verheul, E.: The XTR public key system. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 1–19. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Li, X., Zheng, D., Chen, K.: LFSR-based signatures with message recovery. Intenational Journal of Network Security 4(3), 266–270 (2007)Google Scholar
  10. 10.
    Liu, J., Wei, V., Wong, D.: Linkable spontaneous anonymous group signature for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Liu, J., Wong, D.: Linkable Ring Signatures: Security Models and New Schemes. In: Proceedings of the International Conference on Computational Science and Its Applications (ICCSA 2005), Singapore, pp. 614–623 (2005)Google Scholar
  12. 12.
    Niederreiter, H.: Finite Fields and cryptology. Finite Fields, Coding Theory, and Advances in Communications and Computing, pp. 359–373, M. Dekker, New York (1993)Google Scholar
  13. 13.
    Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 354–369. Springer, Heidelberg (1998)Google Scholar
  14. 14.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 361–396 (2000)zbMATHCrossRefGoogle Scholar
  15. 15.
    Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Smith, P., Skinner, C.: A public-key cryptosystem and a digital signature system based on the Lucas function analogue to discrete logarithms. In: Safavi-Naini, R., Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, Springer, Heidelberg (1995)CrossRefGoogle Scholar
  17. 17.
    Tan, C., Yi, X., Siew, C.: On the n-th order shift register based discrete logrithm. IEICE Trans. Fundamentals E86-A, 1213–1216 (2003)Google Scholar
  18. 18.
    Wei, V.: A bilinear spontaneous anonymous threshold signature for ad hoc groups. Cryptology ePrint Archive, Report 2004/039, available at:
  19. 19.
    Zhang, F., Kim, K.: ID-Based blind signature and ring signature from pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Xiangxue Li
    • 1
    • 3
  • Dong Zheng
    • 2
    • 4
  • Kefei Chen
    • 2
    • 4
  1. 1.School of Information Security Engineering, Shanghai JiaoTong University 
  2. 2.Department of Computer Science and Engineering, Shanghai JiaoTong University 
  3. 3.State Key Laboratory of Information Security (Institute of Software of Chinese Academy of Sciences)China
  4. 4.National Laboratory for Modern Communications, Chengdu, 610041 

Personalised recommendations