Advertisement

GDED-X Schemes for Load Balancing on Heterogeneous OTIS-Networks

  • Yong Qin
  • Wenjun Xiao
  • Chenggui Zhao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4494)

Abstract

In this paper, several diffusion schemes, designed for load balancing on optical transpose interconnection system (OTIS), have been generalized to heterogeneous OTIS-networks,based on an ideal of divide and conquer. These generalized schemes are called GDED-X and they schedule the load flow on intragroup links and intergroup links separately. Contrasted with other existing schemes available to heterogeneous networks, GDED-X schemes have a prominent promotion in efficiency and stability of iteration. Some theoretical evidences and experimental results are also be given to show that GDED-X schemes are better than those traditional X schemes for heterogeneous OTIS-networks, which shows the usability of our proposed schemes.

Keywords

Load Balance Heterogeneous Network Factor Graph Node Weight Homogeneous Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhao, C., Xiao, W., Qing, Y.: Efficient Diffusion Schemes for Load Balancing on Heterogeneous Networks. Dynamics of Continuous, Discrete and Impulsive Systems, Series B S1 1, 147–152 (2006)Google Scholar
  2. 2.
    Zhao, C., Xiao, W., Qing, Y.: Hybrid Diffusion Schemes for Load Balancing on OTIS-Networks. In: The 7th International Conference on Algorithms and Architectures for Parallel Processing (accepted 2007)Google Scholar
  3. 3.
    Muthukrishnan, S., Ghosh, B., Schultz, M.H.: First- and second-order diffusive methods for rapid, coarse, distributed load balancing. Theory of Computing Systems 31, 331–354 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Elsässer, R., Frommer, A., Monien, B., preis, R.: Optimal and alternating direction load balancing schemes. In: Amestoy, P.R., Berger, P., Daydé, M., Duff, I.S., Frayssé, V., Giraud, L., Ruiz, D. (eds.) Euro-Par 1999. LNCS, vol. 1685, pp. 280–290. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Diekmann, R., Frommer, A., Monien, B.: Efficient schemes for nearest neighbor load balancing. Parallel Computing 25, 789–812 (1999)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Elsässer, R., Monien, B., Preis, R.: Diffusion schemes for load balancing on heterogeneous networks. Theory of Computing Systems 35, 305–320 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Elsässer, R., Monien, B., Preis, R., Frommer, A.: Optimal diffusion schemes and load balancing on product graphs. Parallel Processing Letters. 14, 61–73 (2004)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Arndt, H.: On finite dimension exchange algorithms. Linear Algebra and its Applications 380, 73–93 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Day, K., Al-Ayyoub, A.: Topological properties of OTIS-Networks. IEEE Transactions on Parallel and Distributed Systems 13, 359–366 (2002)CrossRefGoogle Scholar
  10. 10.
    Parhami, B.: Swapped interconnection networks: Topological, performance, and robustness attributes. Journal of Parallel and Distributed Computing 65, 1443–1452 (2005)zbMATHCrossRefGoogle Scholar
  11. 11.
    Godsil, G.: Algebraic Graph Theory, pp. 279–306. Springer, Heidelberg (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yong Qin
    • 1
    • 2
  • Wenjun Xiao
    • 2
  • Chenggui Zhao
    • 2
  1. 1.Information and Network Center, Maoming University, Maoming, 525000China
  2. 2.School of Computer Science and Engineering, South China, University of Technology, Guangzhou, 510640China

Personalised recommendations