Advertisement

Hybrid Diffusion Schemes for Load Balancing on OTIS-Networks

  • Chenggui Zhao
  • Wenjun Xiao
  • Yong Qin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4494)

Abstract

Several diffusion schemes have been developed for load balancing on general networks. But these schemes are not well adapt to the optical transpose interconnection network (OTIS) because this network usually has high order Laplace matrix such that computing its spectrum becomes complicated. Even if its spectrum is obtained simply, diffusion schemes sometimes are rather difficult to implement because of large scale of network usually.

Corresponding to traditional X schemes, we propose hybrid diffusion schemes called DED-X for load balancing on OTIS network. By DED-X schemes, load flows are scheduled on intragroup and intergroup links on OTIS network separately. The DED-X schemes only compute the Laplace spectrum of the factor graph of the OTIS network. The spectral information of whole OTIS network is not necessary. We also provide some theoretical evidences to show that DED-X schemes are better than those traditional X schemes. Simulation results show that proposed schemes have significant promotion in efficiency and stability.

Keywords

Load Balance Factor Graph Distinct Eigenvalue Node Load Factor Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cybenko, G.: Load balancing for distributed memory multiprocessors. Journal of Parallel and Distributed Computing 7, 279–301 (1989)CrossRefGoogle Scholar
  2. 2.
    Muthukrishnan, S., Ghosh, B., Schultz, M.H.: First- and second-order diffusive methods for rapid, coarse, distributed load balancing. Theory of Computing Systems 31, 331–354 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Diekmann, R., Frommer, A., Monien, B.: Efficient schemes for nearest neighbor load balancing. Parallel Computing 25, 789–812 (1999)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Elsässer, R., Monien, B., Preis, R.: Diffusion schemes for load balancing on heterogeneous networks. Theory of Computing Systems 35, 305–320 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Elsässer, R., Frommer, A., Monien, B., preis, R.: Optimal and alternating direction load balancing schemes. In: Amestoy, P.R., Berger, P., Daydé, M., Duff, I.S., Frayssé, V., Giraud, L., Ruiz, D. (eds.) Euro-Par 1999. LNCS, vol. 1685, pp. 280–290. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Elsässer, R., Monien, B., Preis, R., Frommer, A.: Optimal diffusion schemes and load balancing on product graphs. Parallel Processing Letters 14, 61–73 (2004)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Elsässer, R., Monien, B., Schamberger, S.: Load Balancing in Dynamic Networks. In: 2004 International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN 2004), ispan (2004)Google Scholar
  8. 8.
    Arndt, H.: On finite dimension exchange algorithms. Linear Algebra and its Applications 380, 73–93 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Arndt, H.: Load balancing: Dimension exchange on product graphs. In: Proceedings of IPDPS 2004, IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  10. 10.
    Golub, G., Varga, R.: Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods. In: numer. Math. pp. 147–156 (1961)Google Scholar
  11. 11.
    Day, K., Al-Ayyoub, A.: Topological properties of OTIS-Networks. IEEE Transactions on Parallel and Distributed Systems 13, 359–366 (2002)CrossRefGoogle Scholar
  12. 12.
    Parhami, B.: Swapped interconnection networks: Topological, performance, and robustness attributes. Journal of Parallel and Distributed Computing 65, 1443–1452 (2005)zbMATHCrossRefGoogle Scholar
  13. 13.
    Parhami, B.: Introduction to Parallel Processing: Algorithms and Architectures. Plenum Press, New York (1999)Google Scholar
  14. 14.
    Mohar, B.: Some applications of Laplace eigenvalues of graphs. In: Hahn, G., Sabidussi, G. (eds.) Graph Symmetry: Algebraic Methods and Applications. NATO ASI Series C, vol. 497, pp. 225–275. Kluwer, Dordrecht (1997)Google Scholar
  15. 15.
    Chung, F. R. K.: Spectral Graph Theory. In: Regional Conference Series in Mathematics. vol. 92. American Mathematical Society (1997)Google Scholar
  16. 16.
    Godsil, G.: Algebraic Graph Theory, pp. 279–306. Springer, Heidelberg (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Chenggui Zhao
    • 1
  • Wenjun Xiao
    • 1
  • Yong Qin
    • 1
    • 2
  1. 1.School of Compuer Science and Engineering, South China University of Technology, Guangzhou, 510640China
  2. 2.Information and Network Center, Maoming University, Maoming, 525000China

Personalised recommendations