Skip to main content

A Quadratic Programming Approach to the Graph Edit Distance Problem

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4538))

Abstract

In this paper we propose a quadratic programming approach to computing the edit distance of graphs. Whereas the standard edit distance is defined with respect to a minimum-cost edit path between graphs, we introduce the notion of fuzzy edit paths between graphs and provide a quadratic programming formulation for the minimization of fuzzy edit costs. Experiments on real-world graph data demonstrate that our proposed method is able to outperform the standard edit distance method in terms of recognition accuracy on two out of three data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1, 245–253 (1983)

    Article  MATH  Google Scholar 

  2. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics (Part B) 13(3), 353–363 (1983)

    MATH  Google Scholar 

  3. Wagner, R., Fischer, M.: The string-to-string correction problem. Journal of the Association for Computing Machinery 21(1), 168–173 (1974)

    MATH  MathSciNet  Google Scholar 

  4. Selkow, S.: The tree-to-tree editing problem. Information Processing Letters 6(6), 184–186 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bunke, H., Dickinson, P., Kraetzl, M.: Theoretical and algorithmic framework for hypergraph matching. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 463–470. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Neuhaus, M., Bunke, H.: An error-tolerant approximate matching algorithm for attributed planar graphs and its application to fingerprint classification. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A., de Ridder, D. (eds.) Structural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 3138, pp. 180–189. Springer, Heidelberg (2004)

    Google Scholar 

  7. Neuhaus, M., Riesen, K., Bunke, H.: Fast suboptimal algorithms for the computation of graph edit distance. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) Structural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 4109, pp. 163–172. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Heidelberg (2000)

    Google Scholar 

  9. Christmas, W., Kittler, J., Petrou, M.: Structural matching in computer vision using probabilistic relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(8), 749–764 (1995)

    Article  Google Scholar 

  10. Wilson, R., Hancock, E.: Structural matching by discrete relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(6), 634–648 (1997)

    Article  Google Scholar 

  11. Justice, D., Hero, A.: A binary linear programming formulation of the graph edit distance. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(8), 1200–1214 (2006)

    Article  Google Scholar 

  12. Tsai, W., Fu, K.: Error-correcting isomorphism of attributed relational graphs for pattern analysis. IEEE Transactions on Systems, Man, and Cybernetics (Part B) 9(12), 757–768 (1979)

    Article  MATH  Google Scholar 

  13. Zhang, X., Ye, Y.: Computational Optimization Program Library: Convex Quadratic Programming. University of Iowa (1998)

    Google Scholar 

  14. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  15. Le Saux, B., Bunke, H.: Feature selection for graph-based image classifiers. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 147–154. Springer, Heidelberg (2005)

    Google Scholar 

  16. Ambauen, R., Fischer, S., Bunke, H.: Graph edit distance with node splitting and merging and its application to diatom identification. In: Hancock, E., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 95–106. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Escolano Mario Vento

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neuhaus, M., Bunke, H. (2007). A Quadratic Programming Approach to the Graph Edit Distance Problem. In: Escolano, F., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2007. Lecture Notes in Computer Science, vol 4538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72903-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72903-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72902-0

  • Online ISBN: 978-3-540-72903-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics