Skip to main content

Probabilistic Relaxation Labeling by Fokker-Planck Diffusion on a Graph

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4538))

Abstract

In this paper we develop a new formulation of probabilistic relaxation labeling for the task of data classification using the theory of diffusion processes on graphs. The state space of our process as the nodes of a support graph which represent potential object-label assignments. The edge-weights of the support graph encode data-proximity and label consistency information. The state-vector of the diffusion process represents the object-label probabilities. The state vector evolves with time according to the Fokker-Planck equation. We show how the solution state vector can be estimated using the spectrum of the Laplacian matrix for the weighted support graph. Experiments on various data clustering tasks show effectiveness of our new algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, A., Triggs, B.: Tracking articulated motion using a mixture of autoregressive models. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 54–65. Springer, Heidelberg (2004)

    Google Scholar 

  2. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. NIPS (2001)

    Google Scholar 

  3. Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society (1997)

    Google Scholar 

  4. Blake, C.L., Newman, D.J., Hettich, S., Merz, C.J.: UCI repository of machine learning databases (1998)

    Google Scholar 

  5. Faugeras, O., Berthod, M.: Improving consistency and reducing ambiguity in stochastic labeling: An optimization approach. IEEE Trans. PAMI, vol. 3(4) (1981)

    Google Scholar 

  6. Fischer, I., Poland, J.: New methods for spectral clustering. Technical Report IDSIA-12-04, IDSIA (2004)

    Google Scholar 

  7. Hancock, E.R., Kittler, J.: Edge-labeling using dictionary based relaxation. IEEE Trans. PAMI 12, 165–181 (1990)

    Google Scholar 

  8. Hummel, R.A., Zucker, S.W.: On the foundations of relaxation labeling processes. IEEE Trans. PAMI, l.PAMI-5, 267 (1983)

    Google Scholar 

  9. Kittler, J., Hancock, E.R.: Combining evidence in probabilistic relaxation. Int. J. Pattern Recognition And Artificial Inteligence 3(1), 29–51 (1989)

    Article  Google Scholar 

  10. Kondor, R.I., Lafferty, J.: Diffusion kernels on graphs and other discrete input spaces. In: ICML, pp. 315–322 (2002)

    Google Scholar 

  11. Lafon, S., Lee, A.B.: Diffusion Maps and Coarse-Graining: A Unified Framework for Dimensionality Reduction, Graph Partitioning and Data Set Parameterization. IEEE Trans. PAMI 28, 1393–1403 (2006)

    Google Scholar 

  12. Moler, C., van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review 45(1), 3–49 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nadler, B., Lafon, S., Coifman, R.R., Kevrekidis, I.G.: Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators. NIPS (2005)

    Google Scholar 

  14. Okuma, K., Taleghani, A., de Freitas, N., Little, J., Lowe, D.: A boosted particle filter: Multitarget detection and tracking. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 28–39. Springer, Heidelberg (2004)

    Google Scholar 

  15. Pelillo, M., Refice, M.: Learning compatibility coefficients for relaxation labeling processes. IEEE Trans. PAMI 16(9), 933–945 (1994)

    Google Scholar 

  16. Rosenfeld, A., Hummel, R., Zucker, S.: Scene labeling by relaxation operations. IEEE Trans. Systems. Man and Cybernetics 6, 420–433 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  17. Smola, A.J., Kondor, R.: Kernels and regularization on graphs. In: Warmuth, M., Schökopf, B. (eds) COLT/KW 2003 (2003)

    Google Scholar 

  18. Sudderth, E.B., Ihler, A.T., Freeman, W.T., Willsky, A.S.: Nonparametric belief propagation. In: CVPR, pp. 605–612 (2003)

    Google Scholar 

  19. Szummer, M., Jaakkola, T.: Partially labeled classification with Markov random walks. In: NIPS 15 (2002)

    Google Scholar 

  20. Tishby, N., Slonim, N.: Data clustering by Markovian relaxation and the information bottleneck method. In: NIPS 13 (2000)

    Google Scholar 

  21. Tsuda, K., Noble, W.S.: Learning kernels from biological networks by maximizing entropy. Bioinformatics 20, 326–333 (2004)

    Article  Google Scholar 

  22. Vert, J.-P., Kanehisa, M.: Graph-driven feature extraction from microarray data using diffusion kernels and kernel CCA. In: NIPS (2002)

    Google Scholar 

  23. Waltz, D.L.: Generating semantic descriptions from drawings of scenes with shadows. Technical Report 271, MIT AI Lab (1972)

    Google Scholar 

  24. Weiss, Y.: Interpreting images by propagating Baysian beliefs. In: ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS, pp. 908–914 (1997)

    Google Scholar 

  25. Zheng, Y., Doermann, D.: Robust point matching for two-dimensional nonrigid shapes. In: Proceedings IEEE Conf. on Computer Vision, pp. 1561–1566 (2005)

    Google Scholar 

  26. Zhou, D., Schölkopf, B.: Learning from labeled and unlabeled data using random walks. In: Proceedings of the 26th DAGM Symposium, pp. 237–244 (2004)

    Google Scholar 

  27. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian fields and harmonic functions. In: ICML, pp. 1561–1566 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Escolano Mario Vento

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, HF., Hancock, E.R. (2007). Probabilistic Relaxation Labeling by Fokker-Planck Diffusion on a Graph. In: Escolano, F., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2007. Lecture Notes in Computer Science, vol 4538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72903-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72903-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72902-0

  • Online ISBN: 978-3-540-72903-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics