Skip to main content

Bipartite Graph Matching for Computing the Edit Distance of Graphs

  • Conference paper
Book cover Graph-Based Representations in Pattern Recognition (GbRPR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4538))

Abstract

In the field of structural pattern recognition graphs constitute a very common and powerful way of representing patterns. In contrast to string representations, graphs allow us to describe relational information in the patterns under consideration. One of the main drawbacks of graph representations is that the computation of standard graph similarity measures is exponential in the number of involved nodes. Hence, such computations are feasible for rather small graphs only. One of the most flexible error-tolerant graph similarity measures is based on graph edit distance. In this paper we propose an approach for the efficient compuation of edit distance based on bipartite graph matching by means of Munkres’ algorithm, sometimes referred to as the Hungarian algorithm. Our proposed algorithm runs in polynomial time, but provides only suboptimal edit distance results. The reason for its suboptimality is that implied edge operations are not considered during the process of finding the optimal node assignment. In experiments on semi-artificial and real data we demonstrate the speedup of our proposed method over a traditional tree search based algorithm for graph edit distance computation. Also we show that classification accuracy remains nearly unaffected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. Journal of Pattern Recognition and Artificial Intelligence 18(3), 265–298 (2004)

    Article  Google Scholar 

  2. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(5), 695–703 (1988)

    Article  MATH  Google Scholar 

  3. Luo, B., Wilson, R., Hancock, E.R.: Spectral embedding of graphs. Pattern Recognition 36(10), 2213–2223 (2003)

    Article  MATH  Google Scholar 

  4. Christmas, W.J., Kittler, J., Petrou, M.: Structural matching in computer vision using probabilistic relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(8), 749–764 (1995)

    Article  Google Scholar 

  5. Suganthan, P.N., Teoh, E.K., Mital, D.P.: Pattern recognition by graph matching using the potts MFT neural networks. Pattern Recognition 28(7), 997–1009 (1995)

    Article  Google Scholar 

  6. Cross, A., Wilson, R., Hancock, E.: Inexact graph matching using genetic search. Pattern Recognition 30(6), 953–970 (1997)

    Article  Google Scholar 

  7. Gori, M., Maggini, M., Sarti, L.: Exact and approximate graph matching using random walks. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(7), 1100–1111 (2005)

    Article  Google Scholar 

  8. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1, 245–253 (1983)

    Article  MATH  Google Scholar 

  9. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics (Part B) 13(3), 353–363 (1983)

    MATH  Google Scholar 

  10. Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern classification. Pattern Recognition 39(10), 1852–1863 (2006)

    Article  MATH  Google Scholar 

  11. Neuhaus, M., Bunke, H.: An error-tolerant approximate matching algorithm for attributed planar graphs and its application to fingerprint classification. In: Fred, A., Caelli, T.M., Duin, R., Campilho, A., de Ridder, D. (eds.) Structural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 3138, pp. 180–189. Springer, Heidelberg (2004)

    Google Scholar 

  12. Ambauen, R., Fischer, S., Bunke, H.: Graph edit distance with node splitting and merging and its application to diatom identification. In: Hancock, E., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 95–106. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Robles-Kelly, A., Hancock, E.R.: Graph edit distance from spectral seriation. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(3), 365–378 (2005)

    Article  Google Scholar 

  14. Boeres, M.C., Ribeiro, C.C., Bloch, I.: A randomized heuristic for scene recognition by graph matching. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 100–113. Springer, Heidelberg (2004)

    Google Scholar 

  15. Sorlin, S., Solnon, C.: Reactive tabu search for measuring graph similarity. In: Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 172–182. Springer, Heidelberg (2005)

    Google Scholar 

  16. Justice, D., Hero, A.: A binary linear programming formulation of the graph edit distance. IEEE Trans. on Pattern Analysis ans Machine Intelligence 28(8), 1200–1214 (2006)

    Article  Google Scholar 

  17. Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the Society for Industrial and Applied Mathematics 5, 32–38 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions of Systems, Science, and Cybernetics 4(2), 100–107 (1968)

    Article  Google Scholar 

  19. Neuhaus, M., Riesen, K., Bunke, H.: Fast suboptimal algorithms for the computation of graph edit distance. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 163–172. Springer, Heidelberg (2005)

    Google Scholar 

  20. Le Saux, B., Bunke, H.: Feature selection for graph-based image classifiers. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 147–154. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Escolano Mario Vento

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Riesen, K., Neuhaus, M., Bunke, H. (2007). Bipartite Graph Matching for Computing the Edit Distance of Graphs. In: Escolano, F., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2007. Lecture Notes in Computer Science, vol 4538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72903-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72903-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72902-0

  • Online ISBN: 978-3-540-72903-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics