Skip to main content

Carbon-Nanotube Metrology

  • Chapter
Book cover Carbon Nanotubes

Part of the book series: Topics in Applied Physics ((TAP,volume 111))

Abstract

Scientific and industrial metrology provided tools for technological growth andinnovation, by fostering competitiveness and creating a favorable environment forscientific and industrial development. Every major country has its own metrologyinstitute to support companies in increasing their productivity and the quality oftheir goods and services. The fast development of carbon-nanotube science andapplications urged studies on metrology, standardization and industrial qualitycontrol. Development of protocols for the definition of sample parameters likestructural metrics, physical properties and stability are important for both researchand applications of single-, double- and multiwall carbon nanotubes. This workdiscusses some of the experimental techniques that are broadly used forcarbon-nanotube characterization, including scanning probe microscopy andspectroscopy, electron microscopy and diffraction, and optical spectroscopies, fromthe molecular level to bulk properties, addressing achievements, limitations anddirections where further research is needed for the development of standards andprotocols for metrology, standardization and industrial quality control of carbonnanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Dias, J. L. de Matos: Medidas, normaliza{\c c}{\~a}o e qualidade: aspectos da hist{\'o}ria da metrologia no Brasil (Ilustra\c c\~oes, Rio de Janeiro 1998)

    Google Scholar 

  • Conf{\'e}rence G{\'e}n{\'e}rale des Poids et Measures. Comptes Rendus des S{\'e}ances (Gauthier-Villars, Paris 1889)

    Google Scholar 

  • A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. G. Rodrigues, et al.: Large-scale purification of single-walled carbon nanotubes: process, product, and characterization, Appl. Phys. A. 67, 29–37 (1998)

    Article  Google Scholar 

  • I. W. Chiang, B. E. Brinson, R. E. Smalley, J. L. Margrave, R. H. Haure: Purification and characterization of single-wall carbon nanoutbes, J. Phys. Chem. B 105, 1157–1161 (2001)

    Article  Google Scholar 

  • S. Arepalli, P. Nikolaev, O. Gorelik, V. G. Hadjiev, W. Holmes, B. Files, L. Yowell: Protocol for the characterization of single-wall carbon nanotube material quality, Carbon 42, 1783–1791 (2004)

    Article  Google Scholar 

  • 2nd Joint Workshop on Measurement Issues in Single Wall Carbon Nanotubes: Purity and Dispersion Part II (NIST Gaithersburg 2005) URL: http://www.msel.nist.gov/Nanotube2/Carbon_Nan otubes.htm

    Google Scholar 

  • Third NASA-NIST Workshop on Nanotube Measurements (NIST Gaithersburg 2007) URL: http://polymers.nist.gov/Nanotube3/Workshop3. htm

    Google Scholar 

  • First International Forum on the Metrology, Standardization and Industrial Quality of Carbon Nanotubes (INMETRO Rio de Janeiro 2007) URL: http://www.inmetro.gov.br/msin07

    Google Scholar 

  • S. Iijima: Helical microtubules of graphitic carbon, Nature 354, 56 (1991)

    Article  Google Scholar 

  • H. Jiang, F. H. Li, E. I. Kauppinen: (Springer, Netherlands 2004)

    Google Scholar 

  • M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban: Electron microscopy image enhanced, Nature 392, 768 (1998)

    Article  Google Scholar 

  • A. G. Nasibulin, A. Moisala, D. P. Brown, H. Jiang, E. I. Kauppinen: A novel aerosol method for single walled carbon nanotube synthesis, Chem. Phys. Lett. 402, 227–232 (2005)

    Article  Google Scholar 

  • P. Queipo, A. G. Nasibulin, D. Gonzalez, U. Tapper, H. Jiang, T. Tsuneta, K. Grigoras, J. A. Duenas, E. I. Kauppinen: Novel catalyst particle production method for cvd growth of single- and double-walled carbon nanotubes, Carbon 44(8), 1604–1608 (2006)

    Article  Google Scholar 

  • S. Suzuki, K. Kanzaki, Y. Homma, S. Fukuba: Jpn. J. Appl. Phys. 43, 1118–1120 (2004)

    Article  Google Scholar 

  • A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima: Direct evidence for atomic defects in graphene layers, Nature 430, 870–873 (2004)

    Article  Google Scholar 

  • A. Hashimoto, K. Suenaga, K. Urita, T. Shimada, T. Sugai, S. Bandow, H. Shinohara, S. Iijima: Atomic correlation between adjacent graphene layers in double-wall carbon nanotubes, Phys. Rev. Lett. 94, 045504 (2005)

    Article  Google Scholar 

  • N. Tanaka, J. Yamasaki, T. Kawai, H. Pan: Nanotechnol. 15, 1779–1784 (2004)

    Article  Google Scholar 

  • K. Hirahara, K. Saitoh, J. Yamasaki, N. Tanaka: Direct observation of six-membered rings in the upper and lower walls of a single-wall carbon nanotube by spherical aberration-corrected {HRTEM}, Nano Lett. 6(8), 1778–1783 (2006)

    Article  Google Scholar 

  • S. Iijima, T. Ichihashi: Single-shell carbon nanotubes of 1-nm diameter, Nature 363, 603–605 (1993)

    Article  Google Scholar 

  • M. Gao, J. Zuo, R. D. Twesten, I. Petrov, L. A. Nagahara, R. Zhang: Structure determination of individual single-wall carbon nanotubes by nanoarea electron diffraction, Appl. Phys. Lett. 82(16), 2703–2705 (2003)

    Article  Google Scholar 

  • H. Jiang, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen: Robust bessel-function-based method for determination of the (n,m) indices of single-walled carbon nanotubes by electron diffraction, Phys. Rev. B 74, 035427 (2006)

    Article  Google Scholar 

  • A. Lucas, P. Lambin: Diffraction by {DNA}, carbon nanotubes and other helical nanostructures, Rep. Prog. Phys. 68, 1181–1249 (2005)

    Article  Google Scholar 

  • Z. Liu, Q. Zhang, L.-C. Qin: Determination and mapping of diameter and helicity for single-walled carbon nanotubes using nanobeam electron diffraction, Phys. Rev. B 71, 245413 (2005)

    Article  Google Scholar 

  • H. Jiang, A. G. Nasibulin, D. P. Brown, E. I. Kauppinen: Unambiguous atomic structural determination of single-walled carbon nanotubes by electron diffraction, Carbon 45(3), 662–667 (2006)

    Google Scholar 

  • E. Meyer, H. J. Hug, R. Bennewitz: Scanning Probe Microscopy: The Lab on a Tip (Springer, Berlin, Heidelberg 2003)

    Google Scholar 

  • H. J. Guntherodt, R. Wiesendanger (Eds.): Scanning Tunnelling Microscopy II: Further Applications and Related Scanning Techniques, 2 ed., Springer Series in Surface Sciences (Springer, Berlin, Heidelberg 1995)

    Google Scholar 

  • S. Morita, R. Wiesendanger, E. Meyer: Noncontact Atomic Force Microscopy (Springer, Berlin, Heidelberg 2002)

    Book  Google Scholar 

  • G. Binning, H. Rohrer, C. Gerber, E. Weibel: Surface studies by scanning tunneling microscopy, Phys. Rev. Lett. 49, 57–61 (1982)

    Article  Google Scholar 

  • J. W. Gadzuk: Inelastic resonance scattering, tunneling, and desorption, Phys. Rev. B 44, 13446–13477 (1991)

    Article  Google Scholar 

  • B. C. Stipe, M. A. Rezaei, W. Ho: Inducing and viewing the rotational motion of a single molecule, Science 279, 1907–1909 (1998)

    Article  Google Scholar 

  • B. C. Stipe, M. A. Rezaei, W. Ho, S. Gao, M. Persson, B. I. Lundqvist: Single molecule dissociation by tunneling electrons, Phys. Rev. Lett. 78, 4410–4413 (1997)

    Article  Google Scholar 

  • N. Lorente, M. Persson, L. J. Lauhon, W. Ho: Symmetry selection rules for vibrationally inelastic tunneling, Phys. Rev. Lett. 86, 2593–2596 (2001)

    Article  Google Scholar 

  • S. Nolen, S. T. Ruggiero: Tunneling spectroscopy of fullerene/{Ge} multilayer systems, Chem. Phys. Lett. 300, 656–660 (1999)

    Article  Google Scholar 

  • X. M. H. Huang, R. Caldwell, L. Huang, S. C. Jun, M.Huang, M. Y. Sfeir, S. P. O'Brien, J. Hone: Controlled placement of individual carbon nanotubes, Nano Lett. 5, 1515–1518 (2005)

    Article  Google Scholar 

  • M. Y. Sfeir, T. Beetz, F. Wang, L. Huang, X. M. H. Huang, M. Huang, J. Hone, S. O'Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, L. E. Brus: Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure, Science 312, 554 (2006)

    Article  Google Scholar 

  • Understanding carbon nanotubes: From basics to applications, in A. Loiseau, P. Launois, P. Petit, S. Roche, J.-P. Salvetat (Eds.): Lecture Notes in Physics, vol. 677 (Springer 2006)

    Google Scholar 

  • Z. Zhang, C. M. Lieber: Nanotube structure and electronic properties probed by scanning tunneling microscopy, Appl. Phys. Lett. 62, 2792–2794 (1993)

    Article  Google Scholar 

  • C. H. Olk, J. P. Heremans: Scanning tunneling spectroscopy of carbon nanotubes, J. Mater. Res. 9, 259–262 (1994)

    Article  Google Scholar 

  • M. Ge, K. Sattler: Vapor-condensation generation and {STM} analysis of fullerene tubes, Science 260, 515–518 (1993)

    Article  Google Scholar 

  • D. L. Carroll, P. Redlich, P. M. Ajayan, J. C. Charlier, X. Blase, A. {De Vita}, R. Car: Electronic structure and localized states at carbon nanotube tips, Phys. Rev. Lett. 78, 2811–2814 (1997)

    Article  Google Scholar 

  • M. Ge, K. Sattler: Scanning tunneling microscopy of single-shell nanotubes of carbon, Appl. Phys. Lett. 65, 2284–2286 (1994)

    Article  Google Scholar 

  • J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker: Electronic structure of atomically resolved carbon nanotubes, Nature 391, 59–62 (1998)

    Article  Google Scholar 

  • T. W. Odom, J.-L. Huang, P. Kim, C. M. Lieber: Atomic structure and electronic properties of single-walled carbon nanotubes, Nature 391, 62–64 (1998)

    Article  Google Scholar 

  • A. Hassanien, M. Tokumoto, Y. Kumazawa, H. Kataura, Y. Maniwa, S. Suzuki, Y. Achiba: Atomic structure and electronic properties of single-wall carbon nanotubes probed by scanning tunneling microscope at room temperature, Appl. Phys. Lett. 73, 3839–3841 (1998)

    Article  Google Scholar 

  • A. Mrzel, A. Hassanien, Z. Liu, K. Suenaga, Y. Miyata, K. Yanagi, H. Kataura: Effective, fast, and low temperature encapsulation of fullerene derivatives in single wall carbon nanotubes, URL: http://dx.doi.org/10.1016/j.susc.2007.04.236 Surface Science, in press

    Google Scholar 

  • R. S. Ruoff, J. Tersoff, D. C. Lorents, S. Subramoney, B. Chan: Radial deformation of carbon nanotubes by van der {Waals} forces, Nature 364, 514–516 (1993)

    Article  Google Scholar 

  • M. S. Dresselhaus., G. Dresselhaus, P. Avouris (Eds.): Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Top. Appl. Phys. 80 (Springer, Berlin, Heidelberg 2000)

    Google Scholar 

  • E. C. Venema, J. W. G. Wildoer, J. W. Janssen, S. J. Tans, H. L. J. T. Tuinstra, L. P. Kouwenhoven, C. Dekker: Imaging electron wave functions of quantized energy levels in carbon nanotubes, Science 283, 52–55 (1999)

    Article  Google Scholar 

  • Z. Yao, H. W. C. Postma, L. Balents, C. Dekker: Carbon nanotube intramolecular junctions, Nature 402, 273–276 (1999)

    Article  Google Scholar 

  • M. Ouyang, J.-L. Huang, C. L. Cheung, C. M. Lieber: Atomically resolved single-walled carbon nanotube intramolecular junctions, Science 291, 97–100 (2001)

    Article  Google Scholar 

  • A. Hassanien, M. Holzinger, A. Hirsch, , M. Tokumoto, P. Venturini: Ropes of carbon nanotube intramolecular junction, Synth. Met. 137, 1203–1204 (2003)

    Article  Google Scholar 

  • A. Hassanien, M.Tokumoto, P. Umek, D. Mihailovic, A. Mrzel: Fermi electron wave packet interference images on carbon nanotubes at room temperature, Appl. Phys. Lett. 78, 808–810 (2001)

    Article  Google Scholar 

  • R. A. Jishi, M. S. Dresselhaus, G. Dresselhaus: Electron–phonon coupling and the electrical conductivity of fullerene nanotubules, Phys. Rev. B 48, 11385 (1993)

    Article  Google Scholar 

  • T. Hertel, G. Moos: Influence of the excited electron lifetime on the electronic structure of carbon nanotubes, Chem. Phys. Lett. 320, 359 (2000)

    Article  Google Scholar 

  • A. Hassanien, M. Tokumoto: The electronic properties of suspended single wall carbon nanotubes, Carbon 12–13, 2649–2653 (2004)

    Article  Google Scholar 

  • L. Vitali, M. Burghard, M. A. Schneider, L. Liu, S. Y. Wu, C. S. Jayanthi, K. Kern: Phonon spectromicroscopy of carbon nanostructures with atomic resolution, Phys. Rev. Lett. 93, 136103 (2004)

    Article  Google Scholar 

  • L. Vitali, M. Burghard, P. Wah, M. A. Schneider, K. Kern: Local pressure-induced metallization of a semiconducting carbon nanotube in a crossed junction, Phys. Rev. Lett. 96, 086804 (2006)

    Article  Google Scholar 

  • M. Ishigami, H. J. Choi, S. Aloni, S. G. Louie, M. L. Cohen, A. Zettl: Identifying defects in nanoscale materials, Phys. Rev. Lett. 93, 196803 (2004)

    Article  Google Scholar 

  • B. J. LeRoy, S. G. Lemay, J. Kong, C. Dekker: Electrical detection and control of phonons in carbon nanotubes, Nature 432, 371–374 (2004)

    Article  Google Scholar 

  • S. Sapmaz, P. Jarillo-Herrero, L. P. Kouwenhoven, H. S. J. van der Zant: Quantum dots in carbon nanotubes, Semicond. Sci. Technol. 21(11), S52–S63 (2006)

    Article  Google Scholar 

  • A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M. S. Dresselhaus: Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant {Raman} scattering, Phys. Rev. Lett. 86, 1118–1121 (2001)

    Article  Google Scholar 

  • M. Y. Sfeir, T. Beetz, F. Wang, L. Huang, X. M. H. Huang, M. Huang, J. Hone, S. O'Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, L. E. Brus: Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure, Science 312, 554–556 (2006)

    Article  Google Scholar 

  • J. Lefebvre, J. M. Fraser, P. Finnie, Y. Homma: Photoluminescence from an individual single-walled carbon nanotube, Phys. Rev. B 69, 075403 (2004)

    Article  Google Scholar 

  • A. Jorio, R. Saito, T. Hertel, R. B. Weisman, G. Dresselhaus, M. S. Dresselhaus: Carbon nanotube photophysics, MRS Bull. 29, 276 (2004)

    Article  Google Scholar 

  • H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba: Optical properties of single-wall carbon nanotubes, Synthetic Met. 103, 2555–2558 (1999)

    Article  Google Scholar 

  • C. Fantini, A. Jorio, A. P. Santos, V. S. T. Peressinotto, M. A. Pimenta: Characterization of {DNA}-wrapped carbon nanotubes by resonance {Raman} and optical absorption spectroscopies, Chem. Phys. Lett. 439, 138–142 (2007)

    Article  Google Scholar 

  • M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio: Exciton photophysics of carbon nanotubes, Ann. Rev. Phys. Chem. 58, 719–747 (2007)

    Article  Google Scholar 

  • P. T. Araujo, S. K. Doorn, S. Kilina, D. Tretiak, III, E. Einarsson, S. Maruyama, H. Chacham, M. A. Pimenta, A. Jorio: The third and fourth optical transitions in semiconducting carbon nanotubes, Phys. Rev. Lett. 98, 067401 (2007)

    Article  Google Scholar 

  • G. G. Samsonidze, R. Saito, N. Kobayashi, A. Gr{ü}neis, J. Jiang, A. Jorio, S. G. Chou, G. Dresselhaus, M. S. Dresselhaus: Family behavior of the optical transition energies in single-wall carbon nanotubes of smaller diameters, Appl. Phys. Lett. 85, 5703–5705 (2004)

    Article  Google Scholar 

  • V. N. Popov, L. Henrard: Comparative study of the optical properties of single-walled carbon nanotubes within orthogonal and nonorthogonal tight-binding models, Phys. Rev. B 70, 115407 (2004)

    Article  Google Scholar 

  • A. Jorio, C. Fantini, M. A. Pimenta, R. B. Capaz, G. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus, J. Jiang, N. Kobayashi, A. {Grüneis}, R. Saito: Resonance {Raman} spectroscopy (n,m) dependent effects in small diameter single-wall carbon nanotubes, Phys. Rev. B 71, 075401 (2005)

    Article  Google Scholar 

  • C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, M. A. Pimenta: Optical transition energies for carbon nanotubes from resonant {Raman} spectroscopy: Environment and temperature effects, Phys. Rev. Lett. 93, 147406 (2004)

    Article  Google Scholar 

  • S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, R. B. Weisman: Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst, J. Am. Chem. Soc. 125, 11186 (2003)

    Article  Google Scholar 

  • S. Berciaud, L. Cognet, P. Poulin, R. B. Weisman, B. Lounis: Absorption spectroscopy of individual single-walled carbon nanotubes, Nano Lett. (2007)

    Google Scholar 

  • M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio: Raman spectroscopy of carbon nanotubes, Physics Reports 409, 47–99 (2005)

    Article  Google Scholar 

  • A. Jorio, M. A. Pimenta, A. G. {Souza Filho}, R. Saito, G. Dresselhaus, M. S. Dresselhaus: Characterizing carbon nanotube samples with resonance {Raman} scattering, New J. Phys. 5, 1.1–1.17 (2003)

    Article  Google Scholar 

  • V. W. Brar, G. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus, R. Saito, A. K. Swan, M. S. Ünl{ü}, B. B. Goldberg, A. G. {Souza Filho}, A. Jorio: Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes, Phys. Rev. B 66, 155418 (2002)

    Article  Google Scholar 

  • S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman: Structure-assigned optical spectra of single-walled carbon nanotubes, Science 298, 2361–2366 (2002)

    Article  Google Scholar 

  • J. Jiang, R. Saito, K. Sato, J. S. Park, G. G. Samsonidze, A. Jorio, G. Dresselhaus, M. S. Dresselhaus: Exciton–photon, exciton–phonon matrix elements, and resonant {Raman} intensity of single-wall carbon nanotubes, Phys. Rev. B 75, 035405 (2007)

    Article  Google Scholar 

  • A. Jorio, C. Fantini, M. A. Pimenta, D. A. Heller, M. S. Strano, M. S. Dresselhaus, Y. Oyama, J. Jiang, R. Saito: Carbon nanotube population analysis from {Raman} and photoluminescence intensities, Appl. Phys. Lett. 88, 023109 (2006)

    Article  Google Scholar 

  • D. A. Heller, P. W. Barone, J. P. Swanson, R. M. Mayrhofer, M. S. Strano: Using {Raman} spectroscopy to elucidate the aggregation state of single-walled carbon nanotubes, J. Phys. Chem. B 108, 6905–6909 (2004)

    Article  Google Scholar 

  • S. G. Chou, H. B. Ribeiro, E. Barros, A. P. Santos, D. Nezich, G. G. Samsonidze, C. Fantini, M. A. Pimenta, A. Jorio, F. P. Filho, M. S. Dresselhaus, G. Dresselhaus, R. Saito, M. Zheng, G. B. Onoa, E. D. Semke, A. K. Swan, M. S. Ünl{ü}, B. B. Goldberg: Optical characterization of {DNA}-wrapped carbon nanotube hybrids, Chem. Phys. Lett. 397, 296–301 (2004)

    Article  Google Scholar 

  • A. Jorio, A. P. Santos, H. B. Ribeiro, C. Fantini, M. Souza, J. P. M. Vieira, C. A. Furtado, J. Jiang, L. Balzano, D. E. Resasco, M. A. Pimenta: Quantifying carbon-nanotube species with resonance {Raman} scattering, Phys. Rev. B 72, 075207–1–5 (2005)

    Article  Google Scholar 

  • A. Jorio, C. Fantini, M. S. S. Dantas, M. A. Pimenta, A. G. {Souza Filho}, G. G. Samsonidze, V. W. Brar, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. Ünl{ü}, B. B. Goldberg, R. Saito: Linewidth of the {Raman} features of individual single-wall carbon nanotubes, Phys. Rev. B 66, 115411 (2002)

    Article  Google Scholar 

  • A. Jorio, A. G. {Souza Filho}, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. Ünl{ü}, B. Goldberg, M. A. Pimenta, J. H. Hafner, C. M. Lieber, R. Saito: {G}-band resonant {Raman} study of 62 isolated single wall carbon nanotubes, Phys. Rev. B 65, 155412 (2002)

    Article  Google Scholar 

  • A. P. G. Pereira, V. S. T. Peressinotto, A. P. Santos, A. Jorio, M. A. Pimenta: Debundling effects on the tangential modes of carbon nanotubes, unpublished (2007)

    Google Scholar 

  • L. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. {Magalhães}-Paniago, M. A. Pimenta: Appl. Phys. Lett. 88, 163106 (2006)

    Article  Google Scholar 

  • J. Maultzsch, S. Reich, C. Thomsen: Chirality-selective {Raman} scattering of the {D} mode in carbon nanotubes, Phys. Rev. B 64, 121407(R) (2001)

    Article  Google Scholar 

  • K. McGuire, N. Gothard, P. L. Gai, M. S. Dresselhaus, G. Sumanasekera, A. M. Rao: Synthesis and {Raman} characterization of boron-doped single-walled carbon nanotubes, Carbon 43, 219 (2005)

    Article  Google Scholar 

  • S. G. Chou, H. Son, J. Kong, A. Jorio, R. Saito, M. Zheng, G. Dresselhaus, M. S. Dresselhaus: Length characterization of {DNA}-wrapped carbon nanotubes using {Raman} spectroscopy, Appl. Phys. Lett. 90, 131109 (2007)

    Article  Google Scholar 

  • L. G. Cançado, M. A. Pimenta, B. R. A. Neves, M. S. S. Dantas, A. Jorio: General equation for the determination of the crystallite size {L}_a of nanographite by {Raman} spectroscopy, Phys. Rev. Lett. 93, 247401 (2004)

    Article  Google Scholar 

  • M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Can{\c c}ado, A. Jorio, R. Saito: Studying disorder in graphite-based systems by {Raman} spectroscopy, Phys. Chem. Chem. Phys. 9, 1276–1291 (2007)

    Article  Google Scholar 

  • C. Fantini, A. Jorio, M. Souza, R. Saito, G. G. Samsonidze, M. S. Dresselhaus, M. A. Pimenta: Intermediate frequency {Raman} modes in metallic and semiconducting carbon nanotubes, in Proc. Int. Winterschool on Electronic Properties of Novel Mater. (2005)

    Google Scholar 

  • S. G. Chou, H. Son, M. Zheng, R. Saito, A. Jorio, G. Dresselhaus, M. S. Dresselhaus: Finite length effects in {DNA}-wrapped carbon nanotubes, Chem. Phys. Lett. 443, 328–332 (2007)

    Article  Google Scholar 

  • A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim: {Raman} spectrum of graphene and graphene layers, Phys. Rev. Lett. 97, 187401 (2006)

    Article  Google Scholar 

  • A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P. C. Eklund: Nano Lett. (2006)

    Google Scholar 

  • C. Thomsen, S. Reich: Double resonant {Raman} scattering in graphite, Phys. Rev. Lett. 85, 5214 (2000)

    Article  Google Scholar 

  • R. Saito, A. Jorio, A. G. {Souza Filho}, G. Dresselhaus, M. S. Dresselhaus, M. A. Pimenta: Probing phonon dispersion relations of graphite by double resonance {Raman} scattering, Phys. Rev. Lett. 88, 027401 (2002)

    Article  Google Scholar 

  • Y. Oyama, R. Saito, K. Sato, J. Jiang, G. G. Samsonidze, A. Grueneis, Y. Miyauchi, S. Maruyama, A. Jorio, G. Dresselhaus, M. S. Dresselhaus: Photoluminescence intensity of single-wall carbon nanotubes, Carbon 44, 873–879 (2006)

    Article  Google Scholar 

  • S. Reich, C. Thomsen, J. Robertson: Exciton resonances quench the photoluminescence of zigzag carbon nanotubes, Phys. Rev. Lett. 95, 077402 (2005)

    Article  Google Scholar 

  • H. B. Son, A. Reina, M. S. Dresselhaus, J. Kong: Characterizing the chirality distribution of single-walled carbon nanotube materials with tunable {Raman} spectroscopy. {Physica} {Status} {Solidi} {B-Basic}, Solid State Physics 243(13), 3161–3165 (2006)

    Article  Google Scholar 

  • O. Madelung: Semiconductors Data Handbook, 3 ed. (Springer 2004) {ISBN} 10-354040880

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ado Jorio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jorio, A., Kauppinen, E., Hassanien, A. (2007). Carbon-Nanotube Metrology. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds) Carbon Nanotubes. Topics in Applied Physics, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72865-8_3

Download citation

Publish with us

Policies and ethics