Skip to main content

Electrical Transport in Single-Wall Carbon Nanotubes

  • Chapter

Part of the book series: Topics in Applied Physics ((TAP,volume 111))

Abstract

We review recent progress in the measurement and understanding of the electricalproperties of individual metal and semiconducting single-wall carbon nanotubes. Thefundamental scattering mechanisms governing the electrical transport in nanotubesare discussed, along with the properties of p–n and Schottky-barrier junctions insemiconductor tubes. The use of advanced nanotube devices for electronic,high-frequency, and electromechanical applications is discussed. We thenexamine quantum transport in carbon nanotubes, including the observation ofquantized conductance, proximity-induced supercurrents, and spin-dependentballistic transport. We move on to explore the properties of single and coupledcarbon-nanotube quantum dots. Spin and orbital (isospin) magnetic moments lead tofourfold shell structure and unusual Kondo phenomena. We conclude with adiscussion of unanswered questions and a look to future research directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • S. Iijima: Helical microtubules of graphitic carbon, Nature 354, 56–58 (1991)

    Google Scholar 

  • S. J. Tans, M. H. Devoret, H. J. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, C. Dekker: Individual single-wall carbon nanotubes as quantum wires, Nature 386, 474–477 (1997)

    Google Scholar 

  • M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, R. E. Smalley: Single-electron transport in ropes of carbon nanotubes, Science 275, 1922–1925 (1997)

    Google Scholar 

  • S. J. Tans, A. R, M. Verschueren, C. Dekker: Room-temperature transistor based on a single carbon nanotube, Nature 393, 49–52 (1998)

    Google Scholar 

  • R. Martel, T. Schmidt, H. R. Shea, T. Hertel, P. Avouris: Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 73, 2447–2449 (1998)

    Google Scholar 

  • S. G. Louie: in Carbon Nanotubes (Springer, Berlin, Heidelberg 2001) pp. 113–145

    Google Scholar 

  • Z. Yao, C. Dekker, P. Avouris: in Carbon Nanotubes (Springer, Berlin, Heidelberg 2001) pp. 147–171

    Google Scholar 

  • S. Ilani, L. A. K. Donev, M. Kindermann, P. L. McEuen: Measurement of the quantum capacitance of interacting electrons in carbon nanotubes, Nature Phys. 2, 687–691 (2006)

    Google Scholar 

  • W. J. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, H. Park: {Fabry–Perot} interference in a nanotube electron waveguide, Nature 411, 665–669 (2001)

    Google Scholar 

  • J. Kong, E. Yenilmez, T. W. Tombler, W. Kim, H. J. Dai, R. B. Laughlin, L. Liu, C. S. Jayanthi, S. Y. Wu: Quantum interference and ballistic transmission in nanotube electron waveguides, Phys. Rev. Lett. 87, 106801 (2001)

    Google Scholar 

  • A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. J. Dai: Ballistic carbon nanotube field-effect transistors, Nature 424, 654–657 (2003)

    Google Scholar 

  • M. J. Biercuk, N. Mason, J. Martin, A. Yacoby, C. M. Marcus: Anomalous conductance quantization in carbon nanotubes, Phys. Rev. Lett. 94, 026801 (2005)

    Google Scholar 

  • A. Bachtold, M. S. Fuhrer, S. Plyasunov, M. Forero, E. H. Anderson, A. Zettl, P. L. McEuen: Scanned probe microscopy of electronic transport in carbon nanotubes, Phys. Rev. Lett. 84, 6082–6085 (2000)

    Google Scholar 

  • S. J. Tans, C. Dekker: Molecular transistors – potential modulations along carbon nanotubes, Nature 404, 834–835 (2000)

    Google Scholar 

  • Y. Yaish, J. Y. Park, S. Rosenblatt, V. Sazonova, M. Brink, P. L. McEuen: Electrical nanoprobing of semiconducting carbon nanotubes using an atomic force microscope, Phys. Rev. Lett. 92, 046401 (2004)

    Google Scholar 

  • S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, P. Avouris: Carbon nanotubes as {Schottky} barrier transistors, Phys. Rev. Lett. 89, 106801 (2002)

    Google Scholar 

  • F. Leonard, J. Tersoff: Role of {Fermi}-level pinning in nanotube {Schottky} diodes, Phys. Rev. Lett. 84, 4693–4696 (2000)

    Google Scholar 

  • X. D. Cui, M. Freitag, R. Martel, L. Brus, P. Avouris: Controlling energy-level alignments at carbon nanotube/{Au} contacts, Nano Lett. 3, 783–787 (2003)

    Google Scholar 

  • Z. H. Chen, J. Appenzeller, J. Knoch, Y. M. Lin, P. Avouris: The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors, Nano Lett. 5, 1497–1502 (2005)

    Google Scholar 

  • W. Kim, A. Javey, R. Tu, J. Cao, Q. Wang, H. J. Dai: Electrical contacts to carbon nanotubes down to 1 nm in diameter, Appl. Phys. Lett. 87, 173101 (2005)

    Google Scholar 

  • C. Gomez-Navarro, P. J. D. Pablo, J. Gomez-Herrero, B. Biel, F. J. Garcia-Vidal, A. Rubio, F. Flores: Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the {Anderson} localization regime, Nature Mater. 4, 534–539 (2005)

    Google Scholar 

  • E. D. Minot, Y. Yaish, V. Sazonova, J. Y. Park, M. Brink, P. L. McEuen: Tuning carbon nanotube band gaps with strain, Phys. Rev. Lett. 90, 156401 (2003)

    Google Scholar 

  • H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker: Carbon nanotube single-electron transistors at room temperature, Science 293, 76–79 (2001)

    Google Scholar 

  • A. Y. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I. Khodos, Y. B. Gorbatov, V. T. Volkov, C. Journet, M. Burghard: Supercurrents through single-walled carbon nanotubes, Science 284, 1508–1511 (1999)

    Google Scholar 

  • M. T. Woodside, P. L. McEuen: Scanned probe imaging of single-electron charge states in nanotube quantum dots, Science 296, 1098–1101 (2002)

    Google Scholar 

  • M. Shim, A. Javey, N. W. S. Kam, H. J. Dai: Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors, J. Am. Chem. Soc. 123, 11512–11513 (2001)

    Google Scholar 

  • S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, P. L. McEuen: High performance electrolyte gated carbon nanotube transistors, Nano Lett. 2, 869–872 (2002)

    Google Scholar 

  • S. D. Li, Z. Yu, C. Rutherglen, P. J. Burke: Electrical properties of 0.4 cm long single-walled carbon nanotubes, Nano Lett. 4, 2003–2007 (2004)

    Google Scholar 

  • T. Durkop, S. A. Getty, E. Cobas, M. S. Fuhrer: Extraordinary mobility in semiconducting carbon nanotubes, Nano Lett. 4, 35–39 (2004)

    Google Scholar 

  • X. J. Zhou, J. Y. Park, S. M. Huang, J. Liu, P. L. McEuen: Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors, Phys. Rev. Lett. 95, 146805 (2005)

    Google Scholar 

  • T. Ando, T. Nakanishi: Impurity scattering in carbon nanotubes – absence of back scattering, J. Phys. Soc. Jpn. 67, 1704–1713 (1998)

    Google Scholar 

  • P. L. McEuen, M. Bockrath, D. H. Cobden, Y. G. Yoon, S. G. Louie: Disorder, pseudospins, and backscattering in carbon nanotubes, Phys. Rev. Lett. 83, 5098–5101 (1999)

    Google Scholar 

  • J. C. Charlier, T. W. Ebbesen, P. Lambin: Structural and electronic properties of pentagon–heptagon pair defects in carbon nanotubes, Phys. Rev. B 53, 11108–11113 (1996)

    Google Scholar 

  • L. Chico, L. X. Benedict, S. G. Louie, M. L. Cohen: Quantum conductance of carbon nanotubes with defects, Phys. Rev. B 54, 2600–2606 (1996)

    Google Scholar 

  • L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, M. L. Cohen: Pure carbon nanoscale devices: Nanotube heterojunctions, Phys. Rev. Lett. 76, 971–974 (1996)

    Google Scholar 

  • V. H. Crespi, M. L. Cohen, A. Rubio: In situ band gap engineering of carbon nanotubes, Phys. Rev. Lett. 79, 2093–2096 (1997)

    Google Scholar 

  • L. Chico, M. P. L. Sancho, M. C. Munoz: Carbon-nanotube-based quantum dot, Phys. Rev. Lett. 81, 1278–1281 (1998)

    Google Scholar 

  • T. Kostyrko, M. Bartkowiak, G. D. Mahan: Reflection by defects in a tight-binding model of nanotubes, Phys. Rev. B 59, 3241–3249 (1999)

    Google Scholar 

  • T. Kostyrko, M. Bartkowiak, G. D. Mahan: Localization in carbon nanotubes within a tight-binding model, Phys. Rev. B 60, 10735–10738 (1999)

    Google Scholar 

  • M. Igami, T. Nakanishi, T. Ando: Conductance of carbon nanotubes with a vacancy, J. Phys. Soc, Jpn. 68, 716–719 (1999)

    Google Scholar 

  • H. J. Choi, J. Ihm, S. G. Louie, M. L. Cohen: Defects, quasibound states, and quantum conductance in metallic carbon nanotubes, Phys. Rev. Lett. 84, 2917–2920 (2000)

    Google Scholar 

  • Z. Yao, H. W. C. Postma, L. Balents, C. Dekker: Carbon nanotube intramolecular junctions, Nature 402, 273–276 (1999)

    Google Scholar 

  • M. Ouyang, J. L. Huang, C. L. Cheung, C. M. Lieber: Atomically resolved single-walled carbon nanotube intramolecular junctions, Science 291, 97–100 (2001)

    Google Scholar 

  • H. Kim, J. Lee, S. J. Kahng, Y. W. Son, S. B. Lee, C. K. Lee, J. Ihm, Y. Kuk: Direct observation of localized defect states in semiconductor nanotube junctions, Phys. Rev. Lett. 90, 216107 (2003)

    Google Scholar 

  • B. Gao, D. C. Glattli, B. Placais, A. Bachtold: Cotunneling and one-dimensional localization in individual disordered single-wall carbon nanotubes: Temperature dependence of the intrinsic resistance, Phys. Rev. B 74, 085410 (2006)

    Google Scholar 

  • J. Zhu, M. Brink, P. L. McEuen: Frequency shift imaging of quantum dots with single-electron resolution, Appl. Phys. Lett. 87, 242102 (2005)

    Google Scholar 

  • C. L. Kane, E. J. Mele, R. S. Lee, J. E. Fischer, P. Petit, H. Dai, A. Thess, R. E. Smalley, A. R. M. Verschueren, S. J. Tans, C. Dekker: Temperature-dependent resistivity of single-wall carbon nanotubes, Europhys. Lett. 41, 683–688 (1998)

    Google Scholar 

  • J. Appenzeller, R. Martel, P. Avouris, H. Stahl, B. Lengeler: Optimized contact configuration for the study of transport phenomena in ropes of single-wall carbon nanotubes, Appl. Phys. Lett. 78, 3313–3315 (2001)

    Google Scholar 

  • J. Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, T. A. Arias, P. W. Brouwer, P. L. McEuen: Electron–phonon scattering in metallic single-walled carbon nanotubes, Nano Lett. 4, 517–520 (2004)

    Google Scholar 

  • Z. Yao, C. L. Kane, C. Dekker: High-field electrical transport in single-wall carbon nanotubes, Phys. Rev. Lett. 84, 2941–2944 (2000)

    Google Scholar 

  • A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, H. J. Dai: High-field quasiballistic transport in short carbon nanotubes, Phys. Rev. Lett. 92, 106804 (2004)

    Google Scholar 

  • A. Javey, P. F. Qi, Q. Wang, H. J. Dai: Ten- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography, Proc. Nat. Acad. Sci. USA 101, 13408–13410 (2004)

    Google Scholar 

  • E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, H. J. Dai: Negative differential conductance and hot phonons in suspended nanotube molecular wires, Phys. Rev. Lett. 95, 155505 (2005)

    Google Scholar 

  • D. Mann, Y. K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X. R. Wang, L. Zhang, Q. Wang, J. Guo, H. J. Dai: Electrically driven thermal light emission from individual single-walled carbon nanotubes, Nature Nanotechnol. 2, 33–38 (2007)

    Google Scholar 

  • H. Suzuura, T. Ando: Phonons and electron-phonon scattering in carbon nanotubes, Phys. Rev. B 65, 235412 (2002)

    Google Scholar 

  • G. Pennington, N. Goldsman: Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes, Phys. Rev. B 68, 045426 (2003)

    Google Scholar 

  • V. Perebeinos, J. Tersoff, P. Avouris: Electron–phonon interaction and transport in semiconducting carbon nanotubes, Phys. Rev. Lett. 94, 086802 (2005)

    Google Scholar 

  • A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, H. J. Dai: High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates, Nature Mater. 1, 241–246 (2002)

    Google Scholar 

  • A. Javey, J. Guo, D. B. Farmer, Q. Wang, E. Yenilmez, R. G. Gordon, M. Lundstrom, H. J. Dai: Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays, Nano Lett. 4, 1319–1322 (2004)

    Google Scholar 

  • S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, P. Avouris: Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes, Appl. Phys. Lett. 80, 3817–3819 (2002)

    Google Scholar 

  • A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. W. Wang, R. G. Gordon, M. Lundstrom, H. J. Dai: Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics, Nano Lett. 4, 447–450 (2004)

    Google Scholar 

  • Z. H. Chen, J. Appenzeller, Y. M. Lin, J. Sippel-Oakley, A. G. Rinzler, J. Y. Tang, S. J. Wind, P. M. Solomon, P. Avouris: An integrated logic circuit assembled on a single carbon nanotube, Science 311, 1735–1735 (2006)

    Google Scholar 

  • Z. Yu, P. J. Burke: Microwave transport in metallic single-walled carbon nanotubes, Nano Lett. 5, 1403–1406 (2005)

    Google Scholar 

  • J. J. Plombon, K. P. O'Brien, F. Gstrein, V. M. Dubin, Y. Jiao: High-frequency electrical properties of individual and bundled carbon nanotubes, Appl. Phys. Lett. 90, 063106 (2007)

    Google Scholar 

  • Z. Yu, C. Rutherglen, R. J. Burke: Microwave nanotube transistor operation at high bias, Appl. Phys. Lett. 88, 233115 (2006)

    Google Scholar 

  • S. D. Li, Z. Yu, S. F. Yen, W. C. Tang, P. J. Burke: Carbon nanotube transistor operation at 2.6 {GHz}, Nano Lett. 4, 753–756 (2004)

    Google Scholar 

  • M. J. Biercuk, D. J. Reilly, T. M. Buehler, V. C. Chan, J. M. Chow, R. G. Clark, C. M. Marcus: Charge sensing in carbon-nanotube quantum dots on microsecond timescales, Phys. Rev. B 73, 201402 (2006)

    Google Scholar 

  • V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, P. L. McEuen: A tunable carbon nanotube electromechanical oscillator, Nature 431, 284–287 (2004)

    Google Scholar 

  • J. Appenzeller, D. J. Frank: Frequency dependent characterization of transport properties in carbon nanotube transistors, Appl. Phys. Lett. 84, 1771–1773 (2004)

    Google Scholar 

  • S. Rosenblatt, H. Lin, V. Sazonova, S. Tiwari, P. L. McEuen: Mixing at 50 {GHz} using a single-walled carbon nanotube transistor, Appl. Phys. Lett. 87, 153111 (2005)

    Google Scholar 

  • A. A. Pesetski, J. E. Baumgardner, E. Folk, J. X. Przybysz, J. D. Adam, H. Zhang: Carbon nanotube field-effect transistor operation at microwave frequencies, Appl. Phys. Lett. 88, 113103 (2006)

    Google Scholar 

  • F. Rodriguez-Morales, R. Zannoni, J. Nicholson, M. Fischetti, K. S. Yngvesson, J. Appenzeller: Direct and heterodyne detection of microwaves in a metallic single wall carbon nanotube, Appl. Phys. Lett. 89, 083502 (2006)

    Google Scholar 

  • H. B. Peng, C. W. Chang, S. Aloni, T. D. Yuzvinsky, A. Zettl: Ultrahigh frequency nanotube resonators, Phys. Rev. Lett. 97, 087203 (2006)

    Google Scholar 

  • B. Witkamp, M. Poot, H. S. J. van der Zant: Bending-mode vibration of a suspended nanotube resonator, Nano Lett. 6, 2904–2908 (2006)

    Google Scholar 

  • S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, S. V. Rotkin, J. A. Rogers: High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes, Nature Nanotechnol. 2, 230–236 (2007)

    Google Scholar 

  • E. S. Snow, J. P. Novak, P. M. Campbell, D. Park: Random networks of carbon nanotubes as an electronic material, Appl. Phys. Lett. 82, 2145–2147 (2003)

    Google Scholar 

  • J. U. Lee, P. P. Gipp, C. M. Heller: Carbon nanotube p–n junction diodes, Appl. Phys. Lett. 85, 145–147 (2004)

    Google Scholar 

  • K. Bosnick, N. Gabor, P. McEuen: Transport in carbon nanotube p–i–n diodes, Appl. Phys. Lett. 89, 163121 (2006)

    Google Scholar 

  • E. D. Minot, Y. Yaish, V. Sazonova, P. L. McEuen: Determination of electron orbital magnetic moments in carbon nanotubes, Nature 428, 536–539 (2004)

    Google Scholar 

  • W. J. Liang, M. Bockrath, H. Park: Transport spectroscopy of chemical nanostructures: The case of metallic single-walled carbon nanotubes, Ann. Rev. Phys. Chem. 56, 475–490 (2005)

    Google Scholar 

  • F. D. M. Haldane: `{L}uttinger liquid theory' of one-dimensional quantum fluids. {I.} {P}roperties of the {Luttinger} model and their extension to the general {1D} interacting spinless {Fermi} gas, J. Phys. C 14, 2585–609 (1981)

    Google Scholar 

  • J. Voit: One-dimensional {Fermi} liquids, Rep. Prog. Phys. 57, 977 (1994)

    Google Scholar 

  • M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, T. Balents, P. L. McEuen: Luttinger-liquid behaviour in carbon nanotubes, Nature 397, 598–601 (1999)

    Google Scholar 

  • H. W. C. Postma, M. de Jonge, C. Dekker: Electrical transport through carbon nanotube junctions created by mechanical manipulation, Phys. Rev. B 62, R10653–6 (2000)

    Google Scholar 

  • D. Mann, A. Javey, J. Kong, Q. Wang, H. Dai: Ballistic transport in metallic nanotubes with reliable {Pd} ohmic contacts, Nano Lett. 3, 1541 (2003)

    Google Scholar 

  • C. Berger, Y. Yi, Z. L. Wang, W. A. de Heer: Multiwalled carbon nanotubes are ballistic conductors at room temperature, Appl. Phys. A-Mater. A74, 363–5 (2002)

    Google Scholar 

  • C. Berger, P. Poncharal, Y. Yi, W. de Heer: Ballistic conduction in multiwalled carbon nanotubes, J. Nanosci. Nanotechnol. 3, 171–7 (2003)

    Google Scholar 

  • H. van Houten, C. Beenakker, B. van Wees: in M. A. Reed (Ed.): Nanostructured Systems (Academic Press, San Diego 1992) pp. 9–112

    Google Scholar 

  • W. Liu, J. Xiang, B. P. Timko, Y. Wu, C. M. Lieber: One-dimensional hole gas in germanium/silicon nanowire heterostructures, Proc. Nat. Acad. Sci. 102, 10046 (2005)

    Google Scholar 

  • D. J. Reilly, T. M. Buehler, J. L. O'Brien, A. R. Hamilton, A. S. Dzurak, R. G. Clark, B. E. Kane, L. N. Pfeiffer, K. W. West: Density-dependent spin polarization in ultra-low-disorder quantum wires, Phys. Rev. Lett. 89, 246801/1–4 (2002)

    Google Scholar 

  • K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R. Mace, D. A. Ritchie: Possible spin polarization in a one-dimensional electron gas, Phys. Rev. Lett. 77, 135–8 (1996)

    Google Scholar 

  • G. Scappucci, L. D. Gaspare, E. Giovine, A. Notargiacomo, R. Leoni, F. Evangelisti: Conductance quantization in etched {Si/SiGe} quantum point contacts, Phys. Rev. B 74, 035321 (2006)

    Google Scholar 

  • S. M. Cronenwett, H. J. Lynch, D. Goldhaber-Gordon, L. P. Kouwenhoven, C. M. Marcus, K. Hirose, N. S. Wingreen, V. Umansky: Low-temperature fate of the 0.7 structure in a point contact: {A} {Kondo}-like correlated state in an open system, Phys. Rev. Lett. 88, 226805/1–4 (2002)

    Google Scholar 

  • A. F. Morpurgo, J. Kong, C. M. Marcus, H. Dai: Gate-controlled superconducting proximity effect in carbon nanotubes, Science 286, 263–5 (1999)

    Google Scholar 

  • P. Jarillo-Herrero, J. A. van Dam, L. P. Kouwenhoven: Quantum supercurrent transistors in carbon nanotubes, Nature 439, 953 (2006)

    Google Scholar 

  • J. P. Cleuziou, W. Wernsdorfer, S. Andergassen, S. Florens, V. Bouchiat, T. Ondarcuhu, M. Monthioux: Gate-tuned high frequency response of carbon nanotube {Josephson} junctions, arXiv URL: 0705.2033 (2007)

    Google Scholar 

  • J. P. Cleuziou, W. Wernsdorfer, H. Bouchiat, T. Ondarcuhu, M. Monthioux: Carbon nanotube superconducting quantum interference device, Nature Nanotechnol. 1, 53 (2006)

    Google Scholar 

  • S. Chakraborty, K. M. Walsh, B. W. Alphenaar, L. Liu, K. Tsukagoshi: Temperature-mediated switching of magnetoresistance in co-contacted multiwall carbon nanotubes, Appl. Phys. Lett. 83, 1008–10 (2003)

    Google Scholar 

  • K. Tsukagoshi, B. W. Alphenaar, H. Ago: Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube, Nature 401, 572–4 (1999)

    Google Scholar 

  • S. Sahoo, T. Kontos, C. Schonenberger, C. Surgers: Electrical spin injection in multiwall carbon nanotubes with transparent ferromagnetic contacts, Appl. Phys. Lett. 86, 112109 (2005)

    Google Scholar 

  • H. T. Man, I. J. W. Wever, A. F. Morpurgo: Spin-dependent quantum interference in single-wall carbon nanotubes with ferromagnetic contacts, Phys. Rev. B 73, 241401(R) (2006)

    Google Scholar 

  • A. Cottet, T. Kontos, S. Sahoo, H. T. Man, M.-S. Choi, W. Belzig, C. Bruder, A. F. Morpurgo, C. Schonenberger: Nanospintronics with carbon nanotubes, Semicond. Sci. Technol. 21, S78 (2006)

    Google Scholar 

  • C. Beenakker, H. van Houten: in Solid State Physics – Advances in Research and Applications (Academic, San Diego, CA 1991) pp. 1–228

    Google Scholar 

  • L. Kouwenhoven, C. Marcus: Quantum dots, Phys. World 11, 35–9 (1998)

    Google Scholar 

  • L. P. Kouwenhoven, C. Marcus, P. L. McEuen, S. Tarucha, R. M. Westervelt, N. S. Wingreen: Electron transport in quantum dots, in L. P. Kouwenhoven, G. Schon, L. L. Sohn (Eds.): {NATO ASI} conference proceedings (Kluwer, Dordrecht 1997)

    Google Scholar 

  • D. H. Cobden, M. Bockrath, P. L. McEuen, A. G. Rinzler, R. E. Smalley: Spin splitting and even-odd effects in carbon nanotubes, Phys. Rev. Lett. 81, 681–4 (1998)

    Google Scholar 

  • D. H. Cobden, J. Nygard: Shell filling in closed single-wall carbon nanotube quantum dots, Phys. Rev. Lett. 89, 046803 (2002)

    Google Scholar 

  • W. Liang, M. Bockrath, H. Park: Shell filling and exchange coupling in metallic single-walled carbon nanotubes, Phys. Rev. Lett. 88, 126801/1–4 (2002)

    Google Scholar 

  • S. Sapmaz, P. Jarillo-Herrero, J. Kong, C. Dekker, L. P. Kouwenhoven, H. S. J. van der Zant: Electronic excitation spectrum of metallic carbon nanotubes, Phys. Rev. B 71, 153402 (2005)

    Google Scholar 

  • P. Jarillo-Herrero, J. Kong, H. S. J. van der Zant, C. Dekker, L. P. Kouwenhoven, S. D. Franceschi: Orbital {{Kondo}} effect in carbon nanotubes, Nature 434, 484 (2005)

    Google Scholar 

  • A. Makarovski, J. Liu, G. Finkelstein: Evolution of {SU({4})} transport regimes in carbon nanotube quantum dots, arXiv URL: cond-mat/0608573 (2006)

    Google Scholar 

  • S. Moriyama, T. Fuse, M. Suzuki, Y. Aoyagi, K. Ishibashi: Four-electron shell structures and an interacting two-electron system in carbon nanotube quantum dots, Phys. Rev. Lett. 94, 186806 (2005)

    Google Scholar 

  • S. Sahoo, T. Kontos, J. Furer, C. Hoffmann, M. Graber, A. Cottet, C. Schonenberger: Electric field control of spin transport, Nature Phys. 1, 99 (2005)

    Google Scholar 

  • A. C. Hewson: The {Kondo} Problem to Heavy {Fermi}on (Cambridge University Press, Cambridge 1993)

    Google Scholar 

  • L. Kouwenhoven, L. Glazman: Revival of the {Kondo} effect, Phys. World 14, 33–38 (2001)

    Google Scholar 

  • J. Nygard, D. H. Cobden, P. E. Lindelof: {Kondo} physics in carbon nanotubes, Nature 408, 342–6 (2000)

    Google Scholar 

  • J. Paaske, A. Rosch, P. Wolfle, N. Mason, C. Marcus, J. Nygard: Non-equilibrium singlet–triplet {Kondo} effect in carbon nanotubes, Nature Phys. 2, 460 (2006)

    Google Scholar 

  • A. A. Clerk, V. Ambegaokar, S. Hershfield: Andreev scattering and the {{Kondo}} effect, Phys. Rev. B 61, 3555–62 (2000)

    Google Scholar 

  • M. R. Buitelaar, W. Belzig, T. Nussbaumer, B. Babic, C. Bruder, C. Schonenberger: Multiple {Andreev} reflections in a carbon nanotube quantum dot, Phys. Rev. Lett. 91, 057005 (2003)

    Google Scholar 

  • M. Graber, T. Nussbaumer, W. Belzig, C. Schonenberger: Quantum dot coupled to a normal and a superconducting lead, Nanotechnol. 15, S479 (2004)

    Google Scholar 

  • M. J. Biercuk, N. Mason, C. M. Marcus: Locally addressable tunnel barriers within a carbon nanotube, Nano Lett. 4, 2499–2502 (2004)

    Google Scholar 

  • M. J. Biercuk, S. Garaj, N. Mason, J. M. Chow, C. M. Marcus: Gate-defined quantum dots on carbon nanotubes, Nano Lett. 5, 1267 (2005)

    Google Scholar 

  • S. Sapmaz, C. Meyer, P. Beliczynski, P. Jarillo-Herrero, L. P. Kouwenhoven: Excited state spectroscopy in carbon nanotube double quantum dots, Nano Lett. 6, 1350 (2006)

    Google Scholar 

  • M. Graber, T. Nussbaumer, W. Belzig, C. Schonenberger: Molecular states in carbon nanotube double quantum dots, Phys. Rev. B 74, 075427 (2006)

    Google Scholar 

  • H. I. Grove-Rasmussen, J. R. Hauptmann, P. E. Lindelof: Single wall carbon nanotube double quantum dot, Appl. Phys. Lett. 89, 232113 (2006)

    Google Scholar 

  • Y. G. Semenov, K. W. Kim, G. J. Iafrate: Electron spin relaxation in semiconducting carbon nanotubes: The role of hyperfine interaction, Phys. Rev. B 75, 045429 (2007)

    Google Scholar 

  • P. J. Burke: Solid {S}tate {E}lectronics 48, 2013 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biercuk, M.J., Ilani, S., Marcus, C.M., McEuen, P.L. (2007). Electrical Transport in Single-Wall Carbon Nanotubes. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds) Carbon Nanotubes. Topics in Applied Physics, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72865-8_15

Download citation

Publish with us

Policies and ethics