Skip to main content

Carbon-Nanotube Optoelectronics

  • Chapter
Carbon Nanotubes

Part of the book series: Topics in Applied Physics ((TAP,volume 111))

Abstract

Semiconducting single-walled carbon nanotubes are direct-gap materials thatprovide ideal systems for the study of photophysics in one-dimension. Whiletheir excited states involve strongly bound 1D excitons, their single atomiclayer structure makes their optical properties especially sensitive to theirenvironment and external fields, thus allowing for their controlled modification. Inthis chapter we review the properties of the excited states of nanotubes,the mechanisms of their production and detection, focusing particularly onelectrically-induced excitation by ambipolar electron-hole recombination and impactexcitation by hot carriers. Radiative decay of photo-excited and electron-excited(electroluminescence) emission as well as the non-radiative decay to free carriersleading to photoconductivity are discussed. The influence of external electricfields and of environmental interactions on excited nanotubes is considered.Finally, the possible technological uses of carbon nanotubes as nanometer scalelight sources and photocurrent and photovoltage detectors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • J. W. Mintmire, B. I. Dunlap, C. T. White: Are fullerene tubules metallic?, Phys. Rev. Lett. 68, 631 (1992)

    Article  Google Scholar 

  • X. Blase, L. X. Benedict, E. L. Shirley, S. G. Louie: Hybridization effects and metallicity in small radius carbon nanotubes, Phys. Rev. Lett. 72, 1878 (1994)

    Article  Google Scholar 

  • M. S. Dresselhaus, G. Dresselhaus, R. Saito: Carbon fibers based on {C}60 and their symmetry, Phys. Rev. B 45, 6234 (1992)

    Article  Google Scholar 

  • N. Hamada, S. Sawada, A. Oshiyama: New one-dimensional conductors: Graphitic microtubules, Phys. Rev. Lett. 68, 1579 (1992)

    Article  Google Scholar 

  • R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus: Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 60, 2204 (1992)

    Article  Google Scholar 

  • T. Ando: Excitons in carbon nanotubes, J. Phys. Soc. Jpn 66, 1066 (1997)

    Article  Google Scholar 

  • C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, S. G. Louie: Excitonic effects and optical spectra of single-walled carbon nanotubes, Phys. Rev. Lett. 93, 077402 (2004)

    Article  Google Scholar 

  • C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, S. G. Louie: Quasiparticle energies, excitonic effects and optical absorption spectra of small-diameter single-walled carbon nanotubes, Appl. Phys. A-Mater. 78, 1129 (2004)

    Article  Google Scholar 

  • V. Perebeinos, J. Tersoff, P. Avouris: Scaling of excitons in carbon nanotubes, Phys. Rev. Lett. 92, 257402 (2004)

    Article  Google Scholar 

  • E. Chang, G. Bussi, A. Ruini, E. Molinari: Excitons in carbon nanotubes: An ab initio symmetry-based approach, Phys. Rev. Lett. 92, 196401 (2004)

    Article  Google Scholar 

  • T. G. Pedersen: Variational approach to excitons in carbon nanotubes, Phys. Rev. B 67, 073401 (2003)

    Article  Google Scholar 

  • C. L. Kane, E. J. Mele: Ratio problem in single carbon nanotube fluorescence spectroscopy, Phys. Rev. Lett. 90, 207401 (2003)

    Article  Google Scholar 

  • H. Zhao, S. Mazumdar: Electron–electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes, Phys. Rev. Lett. 93, 157402 (2004)

    Article  Google Scholar 

  • C. L. Kane, E. J. Mele: Electron interactions and scaling relations for optical excitations in carbon nanotubes, Phys. Rev. Lett. 93, 197402 (2004)

    Article  Google Scholar 

  • F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz: The optical resonances in carbon nanotubes arise from excitons, Science 308, 838 (2005)

    Article  Google Scholar 

  • J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi, A. Ruini, E. Molinari, M. S. Strano, C. Thomsen, C. Lienau: Exciton binding energies in carbon nanotubes from two-photon photoluminescence, Phys. Rev. B 72, 241402R (2005)

    Article  Google Scholar 

  • X. Qiu, M. Freitag, V. Perebeinos, P. Avouris: Photoconductivity spectra of single-carbon nanotubes: Implications on the nature of their excited states, Nano Lett. 5, 749 (2005)

    Article  Google Scholar 

  • F. Plentz, H. B. Ribeiro, A. Jorio, M. S. Strano, M. A. Pimenta: Direct experimental evidence of exciton–phonon bound states in carbon nanotubes, Phys. Rev. Lett. 95, 247401 (2005)

    Article  Google Scholar 

  • M. Jones, C. Engtrakul, W. K. Metzger, R. J. Ellingson, A. J. Nozik, M. J. Heben, G. Rumbles: Analysis of photoluminescence from solubilized single-walled carbon nanotubes, Phys. Rev. B 71, 115426 (2005)

    Article  Google Scholar 

  • S. G. Chou, F. Plentz, J. Jiang, R. Saito, D. Nezich, H. B. Ribeiro, A. Jorio, M. A. Pimenta, G. G. Samsonidze, A. P. Santos, M. Zheng, G. B. Onoa, E. D. Semke, G. Dresselhaus, M. S. Dresselhaus: Phonon-assisted excitonic recombination channels observed in {DNA}-wrapped carbon nanotubes using photoluminescence spectroscopy, Phys. Rev. Lett. 94, 127402 (2005)

    Article  Google Scholar 

  • H. Htoon, M. J. O'Connell, S. K. Doorn, V. I. Klimov: Single carbon nanotubes probed by photoluminescence excitation spectroscopy: The role of phonon-assisted transitions, Phys. Rev. Lett. 94, 127403 (2005)

    Article  Google Scholar 

  • Y. Miyauchi, S. Maruyama: Identification of an excitonic phonon sideband by photoluminescence spectroscopy of single-walled carbon-13 nanotubes, Phys. Rev. B. 74, 035415 (2006)

    Article  Google Scholar 

  • V. Perebeinos, J. Tersoff, P. Avouris: Effect of exciton–phonon coupling in the calculated optical absorption of carbon nanotubes, Phys. Rev. Lett. 94, 027402 (2005)

    Article  Google Scholar 

  • H. Haug, S. W. Koch: Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, London 2005)

    Google Scholar 

  • P. Avouris, J. Chen, M. Freitag, V. Perebeinos, J. C. Tsang: Carbon nanotube optoelectronics, Phys. Stat. Sol. B 243, 3197 (2006)

    Article  Google Scholar 

  • G. Dukovic, F. Wang, D. Song, M. Y. Sfeir, T. F. Heinz, L. E. Brus: Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes, Nano Lett. 5, 2314 (2005)

    Article  Google Scholar 

  • V. Perebeinos, J. Tersoff, P. Avouris: Radiative lifetime of excitons in carbon nanotubes, Nano Lett. 5, 2495 (2005)

    Article  Google Scholar 

  • C. D. Spataru, S. Ismail-Beigi, R. B. Capaz, S. G. Louie: Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes, Phys. Rev. Lett. 95, 247402 (2005)

    Article  Google Scholar 

  • T. Ando: Effects of valley mixing and exchange on excitons in carbon nanotubes with {A}haronov-{B}ohm flux, J. Phys. Soc. Jpn. 75, 024707 (2006)

    Article  Google Scholar 

  • E. Chang, D. Prezzi, A. Ruini, E. Molinari: URL: cond-matt/0603085 Dark excitons in carbon nanotubes

    Google Scholar 

  • Y. Z. Ma, J. Stenger, J. Zimmermann, S. M. Bachilo, R. E. Smalley, R. B. Weisman, G. R. Fleming: Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy, J. Chem. Phys. 120, 3368 (2004)

    Article  Google Scholar 

  • F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz: Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes, Phys. Rev. Lett. 92, 177401 (2004)

    Article  Google Scholar 

  • A. Hagen, G. Moos, V. Talalaev, J. W. Tomm, T. Hertel: Electronic structure and dynamics of optically excited single-wall carbon nanotubes, Appl. Phys. A 78, 1137 (2004)

    Article  Google Scholar 

  • J. Lefebvre, D. G. Austing, J. Bond, P. Finnie: Photoluminescence imaging of suspended single-walled carbon nanotubes, Nano Lett. 6, 1603 (2006)

    Article  Google Scholar 

  • H. Htoon, P. J. Cox, V. I. Klimov: Structure of excited-state transitions of individual semiconductor nanocrystals probed by photoluminescence excitation spectroscopy, Phys. Rev. Lett. 93, 187402 (2004)

    Article  Google Scholar 

  • J. Lefebvre, P. Finnie, Y. Homma: Temperature-dependent photoluminescence from single-walled carbon nanotubes, Phys. Rev. B 70, 045419 (2004)

    Article  Google Scholar 

  • A. Hagen, M. Steiner, M. B. Raschke, C. Lienau, T. Hertel, H. Qian, A. J. Meixner, A. Hartschuh: Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes, Phys. Rev. Lett. 95, 197401 (2005)

    Article  Google Scholar 

  • J. Shaver, J. Kono, O. Portugall, V. Krstic, G. L. J. A. Rikken, Y. Miyauchi, S. Maruyama, V. Perebeinos: Magnetic brightening of carbon nanotube photoluminescence through symmetry breaking, Nano Lett. 7, 1851 (2007)

    Article  Google Scholar 

  • V. Perebeinos, J. Tersoff, P. Avouris: Electron–phonon interaction and transport in semiconducting carbon nanotubes, Phys. Rev. Lett. 94, 086802 (2005)

    Article  Google Scholar 

  • Y. Toyozawa: Prog. Theor. Phys. 25, 59 (1964)

    Google Scholar 

  • J. C. Tsang, M. Freitag, V. Perebeinos, J. Liu, P. Avouris: Doping and phonon renormalization in carbon nanotubes, Nature Nano 2, 725–730 (2007)

    Article  Google Scholar 

  • V. Perebeinos, P. Avouris: Impact excitation by hot carriers in carbon nanotubes, Phys. Rev. B 74, 121410R (2006)

    Article  Google Scholar 

  • E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, H. Dai: Negative differential conductance and hot phonons in suspended nanotube molecular wires, Phys. Rev. Lett. 95, 155505 (2005)

    Article  Google Scholar 

  • M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, J. Robertson: Electron transport and hot phonons in carbon nanotubes, Phys. Rev. Lett. 95, 236802 (2005)

    Article  Google Scholar 

  • J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, P. Avouris: Bright infrared emission from electrically induced excitons in carbon nanotubes, Science 310, 1171 (2005)

    Article  Google Scholar 

  • F. Wang, G. Dukovic, E. Knoesel, L. E. Brus, T. F. Heinz: Observation of rapid {A}uger recombination in optically excited semiconducting carbon nanotubes, Phys. Rev. B 70, 241403(R) (2004)

    Article  Google Scholar 

  • J. Kono, G. N. Ostojic, S. Zaric, M. S. Strano, V. C. Moore, J. Shaver, R. H. Hauge, R. E. Smalley: Ultra-fast optical spectroscopy of micelle-suspended single-walled carbon nanotubes, Appl. Phys. A 78, 1093 (2004)

    Article  Google Scholar 

  • Y. Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, G. R. Fleming: Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: Evidence for exciton-exciton annihilation, Phys. Rev. Lett. 94, 157402 (2005)

    Article  Google Scholar 

  • W. Z. Franz: Influence of an electrical field on an optical absorption edge, Naturforsch. 13A, 484 (1958)

    Google Scholar 

  • L. V. Keldysh: Influence of a strong electric field on the optical characteristics of nonconducting crystals, Zh. Eksp. Teor. Fiz. 34, 1138 (1958)

    Google Scholar 

  • L. V. Keldysh: Influence of a strong electric field on the optical characteristics of nonconducting crystals, Sov. Phys. JETP 7 (1958)

    Google Scholar 

  • D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus: Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect, Phys. Rev. Lett. 53, 2173 (1984)

    Article  Google Scholar 

  • D. A. B. Miller, D. S. Chemla, S. Schmitt-Rink: Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined {F}ranz–{K}eldysh effect, Phys. Rev. B 33, 6976 (1986)

    Article  Google Scholar 

  • V. Perebeinos, P. Avouris: Exciton ionization, {F}ranz–{K}eldysh, and stark effects in carbon nanotubes, Nano Lett. 7, 609 (2007)

    Article  Google Scholar 

  • H. Zhao, S. Mazumdar: Elucidation of the electronic structure of semiconducting single-walled carbon nanotubes by electroabsorption spectroscopy, Phys. Rev. Lett. 98, 166805 (2007)

    Article  Google Scholar 

  • H. A. Bethe, E. E. Salpeter: in Quantum Mechanics of One- and Two- Electron Atoms (Academic, New York 1957)

    Chapter  Google Scholar 

  • C. Manzoni, A. Gambetta, E. Menna, M. Meneghetti, G. Lanzani, G. Cerullo: Intersubband exciton relaxation dynamics in single-walled carbon nanotubes, Phys. Rev. Lett. 94, 207401 (2005)

    Article  Google Scholar 

  • P. Avouris: Carbon nanotube electronics, Phys. World 20, 40 (2007)

    Google Scholar 

  • S. J. Tans, A. R. M. Verschueren, C. Dekker: Room-temperature transistor based on a single carbon nanotube, Nature 393, 49 (1998)

    Article  Google Scholar 

  • R. Martel, T. Schmidt, H. R. Shea, T. Hertel, P. Avouris: Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 73, 2447 (1998)

    Article  Google Scholar 

  • F. Leonard, J. Tersoff: Novel length scales in nanotube devices, Phys. Rev. Lett. 83, 5174 (1999)

    Article  Google Scholar 

  • M. S. Fuhrer, J. Nyg{Ã¥}rd, L. Shih, M. Forero, Y. G. Yoon, M. S. C. Mazzoni, H. J. Choi, J. Ihm, S. G. Louie, A. Zettl, P. L. McEuen: Crossed nanotube junctions, Science 288, 494 (2000)

    Article  Google Scholar 

  • M. Freitag, M. Radosavljevic, Y. Zhou, A. T. Johnson: Controlled creation of a carbon nanotube diode by a scanned gate, Appl. Phys. Lett. 79, 3326 (2001)

    Article  Google Scholar 

  • R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. K. Chan, J. Tersoff, P. Avouris: Ambipolar electrical transport in semiconducting single-wall carbon nanotubes, Phys. Rev. Lett. 87, 256805 (2001)

    Article  Google Scholar 

  • S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, P. Avouris: Carbon nanotubes as schottky barrier transistors, Phys. Rev. Lett. 89, 106801 (2002)

    Article  Google Scholar 

  • T. Nakanishi, A. Bachtold, C. Dekker: Transport through the interface between a semiconducting carbon nanotube and a metal electrode, Phys. Rev. B 66, 073307 (2002)

    Article  Google Scholar 

  • M. Radosavljevic, S. Heinze, J. Tersoff, P. Avouris: Drain voltage scaling in carbon nanotube transistors, Appl. Phys. Lett. 83, 2435 (2003)

    Article  Google Scholar 

  • J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S. Wind, P. Avouris: Field-modulated carrier transport in carbon nanotube transistors, Phys. Rev. Lett. 89, 126801 (2002)

    Article  Google Scholar 

  • S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, P. Avouris: Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes, Appl. Phys. Lett. 80, 3817 (2002)

    Article  Google Scholar 

  • P. Avouis, A. Afzali, J. Appenzeller, J. Chen, M. Freitag, C. Klinke, Y.-M. Lin, J. C. Tsang: Carbon nanotube electronics and optoelectronics, IEDM Tech. Digest pp. 525–529 (2004)

    Google Scholar 

  • J. A. Misewich, R. Martel, P. Avouris, J. C. Tsang, S. Heinze, J. Tersoff: Electrically induced optical emission from a carbon nanotube fet, Science 300, 783 (2003)

    Article  Google Scholar 

  • M. Freitag, Y. Martin, J. A. Misewich, R. Martel, P. Avouris: Photoconductivity of single carbon nanotubes, Nano Lett. 3, 1067 (2003)

    Article  Google Scholar 

  • X. Cui, M. Freitag, R. Martel, L. Brus, P. Avouris: Controlling energy-level alignments at carbon nanotube/{A}u contacts, Nano Lett. 3, 783 (2003)

    Article  Google Scholar 

  • R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. Zhang, H. Dai: Molecular photodesorption from single-walled carbon nanotubes, Appl. Phys. Lett. 79, 2258 (2001)

    Article  Google Scholar 

  • M. E. Itkis, F. Borondics, A. Yu, R. C. Haddon: Bolometric infrared photoresponse of suspended single-walled carbon nanotube films, Science 312, 413 (2006)

    Article  Google Scholar 

  • J. U. Lee: Photovoltaic effect in ideal carbon nanotube diodes, Appl. Phys. Lett. 87, 073101 (2005)

    Article  Google Scholar 

  • J. Guo, M. A. Alam, Y. Yoon: Theoretical investigation on photoconductivity of single intrinsic carbon nanotubes, Appl. Phys. Lett. 88, 133111 (2006)

    Article  Google Scholar 

  • J. C. Tsang, M. Freitag: Private communications

    Google Scholar 

  • K. Balasubramanian, Y. Fan, M. Burghard, K. Kern, M. Friedrich, U. Wannek, A. Mews: Photoelectronic transport imaging of individual semiconducting carbon nanotubes, Appl. Phys. Lett. 84, 2400 (2004)

    Article  Google Scholar 

  • M. F. Islam, D. E. Milkie, C. L. Kane, A. G. Yodh, J. M. Kikkawa: Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes, Phys. Rev. Lett. 93, 037404 (2004)

    Article  Google Scholar 

  • P. T. Araujo, S. K. Doorn, S. Kilina, S. Tretiak, E. Einarsson, S. Maruyama, H. Chacham, M. A. Pimenta, A. Jorio: Third and fourth optical transitions in semiconducting carbon nanotubes, Phys. Rev. Lett. 98, 067401 (2007)

    Article  Google Scholar 

  • J. U. Lee, P. P. Gipp, C. M. Heller: Carbon nanotube p-n junction diodes, Appl. Phys. Lett. 85, 145 (2004)

    Article  Google Scholar 

  • J. Appenzeller, Y. M. Lin, J. Knoch, P. Avouris: Band-to-band tunneling in carbon nanotube field-effect transistors, Phys. Rev. Lett. 93, 196805 (2004)

    Article  Google Scholar 

  • K. Bosnik, N. Gabor, P. McEuen: Transport in carbon nanotube p-i-n diodes, Appl. Phys. Lett. 89, 163121 (2006)

    Article  Google Scholar 

  • M. Freitag, J. C. Tsang, A. Bol, D. Yuan, J. Liu, P. Avouris: Imaging of the schottky barriers and charge depletion in carbon nanotube transistors, Nano Lett. 7, 2037 (2007)

    Article  Google Scholar 

  • K. Balasubramanian, M. Burghard, K. Kern, M. Scolari, A. Mews: Photocurrent imaging of charge transport barriers in carbon nanotube devices, Nano Lett. 5, 507 (2005)

    Article  Google Scholar 

  • M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. C. Tsang, J. A. Misewich, R. Martel, P. Avouris: Hot carrier electroluminescence from a single carbon nanotube, Nano Lett. 4, 1063 (2004)

    Article  Google Scholar 

  • M. Freitag, J. Chen, J. Tersoff, J. C. Tsang, Q. Fu, J. Liu, P. Avouris: Mobile ambipolar domain in carbon-nanotube infrared emitters, Phys. Rev. Lett. 93, 076803 (2004)

    Article  Google Scholar 

  • J. Tersoff, M. Freitag, J. C. Tsang, P. Avouris: Device modeling of long-channel nanotube electro-optical emitter, Appl. Phys. Lett. 86, 263108 (2005)

    Article  Google Scholar 

  • J. Guo, M. A. Alam: Carrier transport and light-spot movement in carbon-nanotube infrared emitters, Appl. Phys. Lett. 86, 023105 (2005)

    Article  Google Scholar 

  • M. Freitag, J. C. Tsang, J. Kirtley, A. Carlsen, J. Chen, A. Troeman, H. Hilgenkamp, P. Avouris: Electrically excited, localized infrared emission from single carbon nanotubes, Nano Lett. 6, 1425 (2006)

    Article  Google Scholar 

  • L. Marty, E. Adam, L. Albert, R. Doyon, D. Menard, R. Martel: Exciton formation and annihilation during 1{D} impact excitation of carbon nanotubes, Phys. Rev. Lett. 96, 136803 (2006)

    Article  Google Scholar 

  • M. S. Fuhrer, B. M. Kim, T. Dürkop, T. Brintlinger: High-mobility nanotube transistor memory, Nano Lett. 2, 755 (2002)

    Article  Google Scholar 

  • M. Radosavljevic, M. Freitag, K. V. Thadani, A. T. Johnson: Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistors, Nano Lett. 2, 761 (2002)

    Article  Google Scholar 

  • D. Mann, Y. K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X. Wang, L. Zhang, Q. Wang, J. Guo, H. Dai: Electrically driven thermal light emission from individual single-walled carbon nanotubes, Nature Nanotech. 2, 33 (2007)

    Article  Google Scholar 

  • L. Novotny, B. Hecht: Principles of Nano-Optics (Cambridge University Press, Cambridge 2006)

    Book  Google Scholar 

  • P. Avouris, J. Appenzeller, R. Martel, S. J. Wind: Carbon nanotube electronics, Proc. IEEE 91, 1772 (2003)

    Article  Google Scholar 

  • H. Dai, A. Javey, E. Pop, D. Mann, W. Kim, Y. Lu: Electrical transport properties and field-effect transistors of carbon nanotubes, NANO 1, 1 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phaedon Avouris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Avouris, P., Freitag, M., Perebeinos, V. (2007). Carbon-Nanotube Optoelectronics. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds) Carbon Nanotubes. Topics in Applied Physics, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72865-8_14

Download citation

Publish with us

Policies and ethics