Skip to main content

Ultrafast Spectroscopy of Carbon Nanotubes

  • Chapter
Carbon Nanotubes

Part of the book series: Topics in Applied Physics ((TAP,volume 111))

Abstract

Time-domain spectroscopic studies provide a unique perspective on the materialsproperties and the microscopic processes underlying them in carbon nanotubes.Ultrafast spectroscopy is used to study the dynamics and kinetics of scattering andrelaxation processes from the femtosecond (1fs ≡ 10−15 s) to the picosecondtimescale. This provides crucial information on carrier and exciton dynamics thatunderpin a variety of potential applications of carbon nanotubes, from their use ascurrent-carrying quantum wires, through light-emitting or detecting nanodevices, totheir use in light-harvesting technologies and photovoltaics. Background informationon the ultrafast spectroscopic techniques of greatest applicability to nanotubes is alsoprovided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • C. Rullière (Ed.): Femtosecond Laser Pulses: Principles and Experiments, 2 ed. (Springer, New York 2005) please provide place of printing for \cite{rulliere05}.

    Google Scholar 

  • J.-C. Diels, W. Rudolph: Ultrashort Laser Pulse Phenomena (Academic Press, San Diego, New York 1996)

    Google Scholar 

  • H. van Amerongen, R. van Grondelle: Transient absorption spectroscopy in study of processes and dynamics in biology, Method. Enzymol. 246, 201–226 (1995)

    Article  Google Scholar 

  • R. Jimenez, G. R. Fleming: Ultrafast spectroscopy of photosynthetic systems, in J. Amesz, A. J. Hoff (Eds.): Biophysical Techniques in Photosynthesis (Kluwer, Dordrecht 1996) pp. 63–73

    Google Scholar 

  • Y.-Z. Ma, L. Valkunas, S. L. Dexheimer, G. R. Fleming: Ultrafast exciton dynamics in semiconducting single-walled carbon nanotubes, Mol. Phys. 104, 1179–1189 (2006)

    Article  Google Scholar 

  • H. Petek, S. Ogawa: Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals, Prog. Surf. Sci. 56, 239–310 (1998)

    Article  Google Scholar 

  • T. Hertel, R. Fasel, G. Moos: Charge-carrier dynamics in single-walled carbon nanotube bundles: A time-domain study, Appl. Phys. A 75, 449–465 (2002)

    Article  Google Scholar 

  • M. Bauer: Femtosecond ultraviolet photoelectron spectroscopy of ultrafast surface processes, J. Phys. D Appl. Phys. 38, R253–R267 (2005)

    Article  Google Scholar 

  • M. Wolf: Femtosecond dynamics of electronic excitations at metal surfaces, Surf. Sci. 377, 343–349 (1997)

    Article  Google Scholar 

  • P. M. Echenique, R. Berndt, E. V. Chulkov, T. H. Fausterd, A. Goldmann, U. Höfer: Decay of electronic excitations at metal surfaces, Surf. Sci. Rep. 52, 219–317 (2004)

    Article  Google Scholar 

  • R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, G. L. Eesley: Femtosecond studies of nonequilibrium electronic processes in metals, Phys. Rev. Lett. 58, 1680–1683 (1987)

    Article  Google Scholar 

  • J. Shah: Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, 2 ed., Springer series in solid-state sciences (Springer, Berlin, Heidelberg 1999)

    Book  Google Scholar 

  • M. A. Kahlow, W. Jarzeba, T. P. DuBruil, P. F. Barbara: Ultrafast emission spectroscopy in the ultraviolet by time-gated upconversion, Rev. Sci. Instrum. 59, 1098–1109 (1988)

    Article  Google Scholar 

  • J. Shah: Ultrafast luminescence spectroscopy using sum frequency generation, IEEE J. Quantum Electron. 24, 276–288 (1988)

    Article  Google Scholar 

  • F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz: Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes, Phys. Rev. Lett. 92, 177401 (2004)

    Article  Google Scholar 

  • D. V. O'Connor, D. Phillips: Time-Correlated Single Photon Counting (Academic Press, London, Orlando 1984)

    Google Scholar 

  • A. Hagen, M. Steiner, M. B. Raschke, C. Lienau, T. Hertel, H. Qian, A. J. Meixner, A. Hartschuh: Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes, Phys. Rev. Lett. 95, 197401 (2005)

    Article  Google Scholar 

  • G. R. Fleming: Chemical Applications of Ultrafast Spectroscopy, The International series of monographs on chemistry (Oxford University Press, New York 1985)

    Google Scholar 

  • J. D. Jackson: Classical Electrodynamics, 3 ed. (Wiley, New York 1999)

    Google Scholar 

  • N. Bloembergen: Nonlinear Optics (Benjamin, New York 1965)

    Google Scholar 

  • M. Born, E. Wolf: Principles of Optics, 6 ed. (Pergamon, Oxford 1980)

    Google Scholar 

  • S. Mukamel: Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York 1995)

    Google Scholar 

  • K. Blum: Density Matrix Theory and Applications (Plenum, New York 1981)

    Book  Google Scholar 

  • M. Cho, H. M. Vaswani, T. Brixner, J. Stenger, G. R. Fleming: Exciton analysis in {2D} electronic spectroscopy, J. Phys. Chem. B 109, 10542–10556 (2005)

    Article  Google Scholar 

  • T. Joo, Y. Jia, J.-Y. Yu., M. J. Lang, G. R. Fleming: Third-order nonlinear time domain probes of solvation dynamics, J. Chem. Phys. 104, 6089–6108 (1996)

    Article  Google Scholar 

  • J. E. Fischer, H. Dai, A. Thess, R. Lee, N. M. Hanjani, D. L. Dehaas, R. E. Smalley: Metallic resistivity in crystalline ropes of single-wall carbon nanotubes, Phys. Rev. B 55, R4921–R4924 (1997)

    Article  Google Scholar 

  • J. Hone, I. Ellwood, M. Muno, A. Mizel, M. L. Cohen, A. Zettl, A. G. Rinzler, R. E. Smalley: Thermoelectric power of single-walled carbon nanotubes, Phys. Rev. Lett. 80, 1042–1045 (1998)

    Article  Google Scholar 

  • L. X. Benedict, V. H. Crespi, S. G. Louie, M. L. Cohen: Static conductivity and superconductivity of carbon nanotubes: Relations between tubes and sheets, Phys. Rev. B 52, 14935–14940 (1995)

    Article  Google Scholar 

  • J. W. Mintmire, B. I. Dunlap, C. T. White: Are fullerene tubules metallic?, Phys. Rev. Lett. 68, 631–634 (1992)

    Article  Google Scholar 

  • R. A. Jishi, M. S. Dresselhaus, G. Dresselhaus: Electron–phonon coupling and the electrical conductivity of fullerene nanotubules, Phys. Rev. B 48, 11385–11389 (1993)

    Article  Google Scholar 

  • S. Frank, P. Poncharal, Z. L. Wang, W. A. de Heer: Carbon nanotube quantum resistors, Science 280, 1744–1746 (1998)

    Article  Google Scholar 

  • P. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea, R. E. Walkup: Carbon nanotubes: Nanomechanics, manipulation, and electronic devices, Appl. Surf. Sci. 141, 201–209 (1999)

    Article  Google Scholar 

  • T. Hertel, G. Moos: Electron–phonon interaction in single-wall carbon nanotubes: A time-domain study, Phys. Rev. Lett. 84, 5002–5005 (2000)

    Article  Google Scholar 

  • S. I. Anisimov, B. L. Kapeliov, T. L. Perel'man: Electron-emission from surface of metals induced by ultrashort laser pulses, Zh. Eksp. Teor. Fiz. 66, 776–781 (1974)

    Google Scholar 

  • G. Moos, R. Fasel, T. Hertel: Temperature dependence of electron to lattice energy-transfer in single-wall carbon nanotube bundles, J. Nanosci. Nanotechnol. 3, 145–149 (2003)

    Article  Google Scholar 

  • P. B. Allen: Theory of thermal relaxation of electrons in metals, Phys. Rev. Lett. 59, 1460–1463 (1987)

    Article  Google Scholar 

  • T. Durkop, S. A. Getty, E. Cobas, M. S. Fuhrer: Extraordinary mobility in semiconducting carbon nanotubes, Nano Lett. 4, 35–39 (2004)

    Article  Google Scholar 

  • G. Dukovic, F. Wang, D. Song, M. Y. Sfeir, T. F. Heinz, L. E. Brus: Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes, Nano Lett. 5, 2314–2318 (2005)

    Article  Google Scholar 

  • P. Avouris, J. Chen, M. Freitag, V. Perebeinos, J. C. Tsang: Carbon nanotube optoelectronics, Phys. Stat. Sol. B 243, 3197–3203 (2006)

    Article  Google Scholar 

  • M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. P. Ma, R. H. Hauge, R. B. Weisman, R. E. Smalley: Band gap fluorescence from individual single-walled carbon nanotubes, Science 297, 593–596 (2002)

    Article  Google Scholar 

  • Y. Oyama, R. Saito, K. Sato, J. Jiang, G. Samsonidze, A. Grüneis, Y. Miyauchi, S. Maruyama, A. Jorio, G. Dresselhaus, M. S. Dresselhaus: Photoluminescence intensity of single-wall carbon nanotubes, Carbon 44, 873–879 (2006)

    Article  Google Scholar 

  • Y.-Z. Ma, C. D. Spataru, L. Valkunas, S. G. Louie, G. R. Fleming: Spectroscopy of zigzag single-walled carbon nanotubes: Comparing femtosecond transient absorption spectra with ab initio calculations, Phys. Rev. B 74, 085402 (2006)

    Article  Google Scholar 

  • M. Jones, C. Engtrakul, W. K. Metzger, R. J. Ellingson, A. J. Nozik, M. J. Heben, G. Rumbles: Analysis of photoluminescence from solubilized single-walled carbon nanotubes, Phys. Rev. B 71, 115426 (2005)

    Article  Google Scholar 

  • C. D. Spataru, S. Ismail-Beigi, R. B. Capaz, S. G. Louie: Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes, Phys. Rev. Lett. 95, 247402 (2005)

    Article  Google Scholar 

  • V. Perebeinos, J. Tersoff, P. Avouris: Radiative lifetime of excitons in carbon nanotubes, Nano Lett. 5, 2495–2499 (2005)

    Article  Google Scholar 

  • A. Hagen, G. Moos, V. Talalaev, T. Hertel: Electronic structure and dynamics of optically excited single-walled carbon nanotubes, Appl. Phys. A 78, 1137–1145 (2004)

    Article  Google Scholar 

  • J. Lefebvre, D. G. Austing, J. Bond, P. Finnie: Photoluminescence imaging of suspended single-walled carbon nanotubes, Nano Lett. 6, 1603–1608 (2006)

    Article  Google Scholar 

  • Y.-Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, G. R. Fleming: Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: Evidence for exciton-exciton annihilation, Phys. Rev. Lett. 94, 157402 (2005)

    Article  Google Scholar 

  • L. Valkunas, Y.-Z. Ma, G. R. Fleming: Exciton-exciton annihilation in single-walled carbon nanotubes, Phys. Rev. B 73, 115432 (2006)

    Article  Google Scholar 

  • Y.-Z. Ma, J. Stenger, J. Zimmermann, S. M. Bachilo, R. E. Smalley, R. B. Weisman, G. R. Fleming: Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy, J. Chem. Phys. 120, 3368–3373 (2004)

    Article  Google Scholar 

  • F. Wang, G. Dukovic, E. Knoesel, L. E. Brus, T. F. Heinz: Observation of rapid {Auger} recombination in optically excited semiconducting carbon nanotubes, Phys. Rev. B 70, 241403 (2004)

    Article  Google Scholar 

  • A. V. Barzykin, M. Tachiya: Stochastic models of carrier dynamics in single-walled carbon nanotubes, Phys. Rev. B 72, 075425 (2005)

    Article  Google Scholar 

  • F. Wang, Y. Wu, M. S. Hybertsen, T. F. Heinz: Auger recombination of excitons in one-dimensional systems, Phys. Rev. B 73, 245424 (2006)

    Article  Google Scholar 

  • M. F. Islam, D. E. Milkie, C. L. Kane, A. G. Yodh, J. M. Kikkawa: Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes, Phys. Rev. Lett. 93, 037404 (2004)

    Article  Google Scholar 

  • G. Malloci, G. Mulas, C. Joblin: Electronic absorption spectra of {PAHs} up to vacuum {UV} – towards a detailed model of interstellar {PAH} photophysics, Astron. Astrophys. 426, 105–117 (2004)

    Article  Google Scholar 

  • C. Manzoni, A. Gambetta, E. Menna, M. Meneghetti, G. Lanzani, G. Cerullo: Intersubband exciton relaxation dynamics in single-walled carbon nanotubes, Phys. Rev. Lett. 94, 207401 (2005)

    Article  Google Scholar 

  • J. Crochet, M. Clemens, T. Hertel: Quantum yield heterogeneities of aqueous single-wall carbon nanotube suspensions, J. Am. Chem. Soc. 129, 8058–8059 (2007)

    Article  Google Scholar 

  • C.-X. Sheng, Z. V. Vardeny, A. B. Dalton, R. H. Baughman: Exciton dynamics in single-walled nanotubes: Transient photoinduced dichroism and polarized emission, Phys. Rev. B 71, 125427 (2005)

    Article  Google Scholar 

  • T. Hertel, A. Hagen, V. Talalaev, K. Arnold, F. Hennrich, M. Kappes, S. Rosenthal, J. McBride, H. Ulbricht, E. Flahaut: Spectroscopy of single- and double-wall carbon nanotubes in different environments, Nano Lett. 5, 511–514 (2005)

    Article  Google Scholar 

  • M. Jones, W. K. Metzger, T. J. McDonald, C. Engtrakul, R. J. Ellingson, G. Rumbles, M. J. Heben: Extrinsic and intrinsic effects on the excited-state kinetics of single-walled carbon nanotubes, Nano Lett. 7, 300–306 (2007)

    Article  Google Scholar 

  • S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, M. S. Strano: Excited-state carrier lifetime in single-walled carbon nanotubes, Phys. Rev. B 71, 033402 (2005)

    Article  Google Scholar 

  • S. Berger, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, X. Marie: Temperature dependence of exciton recombination in semiconducting single-wall carbon nanotubes, Nano Lett. 7, 398–402 (2007)

    Article  Google Scholar 

  • G. N. Ostojic, S. Zaric, J. Kono, M. S. Strano, V. C. Moore, R. H. Hauge, R. E. Smalley: Interband recombination dynamics in resonantly excited single-walled carbone nanotubes, Phys. Rev. Lett. 92, 117402 (2004)

    Article  Google Scholar 

  • Y.-Z. Ma, L. Valkunas, S. M. Bachilo, G. R. Fleming: Temperature effects on femtosecond transient absorption kinetics of semiconducting single-walled carbon nanotubes, Phys. Chem. Chem. Phys. 8, 5689–5693 (2006)

    Article  Google Scholar 

  • I. B. Mortimer, R. J. Nicholas: Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes, Phys. Rev. Lett. 98, 027404 (2007)

    Article  Google Scholar 

  • Z. P. Zhu, J. Crochet, M. S. Arnold, M. C. Hersam, H. Ulbricht, D. Resasco, T. Hertel: Pump-probe spectroscopy of exciton dynamics in (6,5) carbon nanotubes, J. Phys. Chem. C 111, 3831–3835 (2007)

    Article  Google Scholar 

  • G. N. Ostojic, S. Zaric, J. Kono, V. C. Moore, R. H. Hauge, R. E. Smalley: Stability of high-density one-dimensional excitons in carbon nanotubes under high laser excitation, Phys. Rev. Lett. 94, 097401 (2005)

    Article  Google Scholar 

  • O. J. Korovyanko, C.-X. Sheng, Z. V. Vardeny, A. B. Dalton, R. H. Baughman: Ultrafast spectroscopy of excitons in single-walled carbon nanotubes, Phys. Rev. Lett. 92, 017403 (2004)

    Article  Google Scholar 

  • Z. Zhu, M. S. Arnold, M. C. Hersam, T. Hertel: unpublished

    Google Scholar 

  • L. Valkunas, G. Trinkunas, V. Liuolia: Exciton annihilation in molecular aggregates, in D. L. Andrews, A. A. Demidov (Eds.): Resonance Energy Transfer (Wiley, Chichester 1999) pp. 244–307

    Google Scholar 

  • H. van Amerongen, L. Valkunas, R. van Grondelle: Photosynthetic Excitons (World Scientific, Singapore, New Jersey, London, Hongkong 2000)

    Book  Google Scholar 

  • S. G. Chou, M. F. DeCamp, J. Jiang, G. G. Samsonidze, E. B. Barros, F. Plentz, A. Jorio, M. Zheng, G. B. Onoa, E. D. Semke, A. Tokmakoff, R. Saito, G. Dresselhaus, M. S. Dresselhaus: Phonon-assisted exciton relaxation dynamics for a (6,5)-enriched {DNA}-wrapped single-walled carbon nanotube sample, Phys. Rev. B 72, 195415 (2005)

    Article  Google Scholar 

  • L. Huang, T. D. Krauss: Quantized bimolecular {Auger} recombination of excitons in single-walled carbon nanotubes, Phys. Rev. Lett. 96, 057407 (2006)

    Article  Google Scholar 

  • R. M. Russo, E. J. Mele, C. L. Kane, I. V. Rubtsov, M. J. Therien, D. E. Luzzi: One-dimensional diffusion-limited relaxation of photoexcitations in suspensions of single-walled carbon nanotubes, Phys. Rev. B 74, 041405(R) (2006)

    Article  Google Scholar 

  • V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, M. G. Bawendi: Quantization of multiparticle {Auger} rates in semiconductor quantum dots, Science 287, 1011–1013 (2000)

    Article  Google Scholar 

  • M. A. Stevens, C. Silva, D. M. Russell, R. H. Friend: Exciton dissociation mechanisms in the polymeric semiconductors poly(9,9-dioctylfluorene) and poly(9,9-dioctylfluorene-co-benzothiadiazole), Phys. Rev. B 63, 165213 (2001)

    Article  Google Scholar 

  • Y.-Z. Ma, L. Valkunas, S. M. Bachilo, G. R. Fleming: Exciton binding energy in semiconducting single-walled carbon nanotubes, J. Phys. Chem. B 109, 15671–15674 (2005)

    Article  Google Scholar 

  • M. Ghanassi, M. C. Schanne-Klein, F. Hache, A. I. Ekimov, D. Ricard, C. Flytzanis: Time-resolved measurements of carrier recombination in experimental semiconductor-doped glasses: Confirmation of the role of {Auger} recombination, Appl. Phys. Lett. 62, 78–80 (1993)

    Article  Google Scholar 

  • H. Htoon, J. A. Hollingsworth, R. Dickerson, V. I. Klimov: Effect of zero- to one-dimensional transformation on multiparticle {Auger} recombination in semiconductor quantum rods, Phys. Rev. Lett. 91, 227401 (2003)

    Article  Google Scholar 

  • F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz: The optical resonances in carbon nanotubes arise from excitons, Science 308, 838–841 (2005)

    Article  Google Scholar 

  • J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi, A. Ruini, E. Molinari, M. S. Strano, C. Thomsen, C. Lienau: Exciton binding energies in carbon nanotubes from two-photon photoluminescence, Phys. Rev. B 72, 241402(R) (2005)

    Article  Google Scholar 

  • S. N. Dixit, D. Guo, S. Mazumdar: Essential-states mechanism of optical nonlinearity in π-conjugated polymers, Phys. Rev. B 43, 6781–6784 (1991)

    Article  Google Scholar 

  • S. V. Frolov, Z. Bao, M. Wohlgenannt, Z. V. Vardeny: Excited-state relaxation in π-conjugated polymers, Phys. Rev. B 65, 205209 (2001)

    Article  Google Scholar 

  • H. Zhao, S. Mazumdar, C.-X. Sheng, M. Tong, Z. V. Vardeny: Photophysics of excitons in quasi-one-dimensional organic semiconductors: Single-walled carbon nanotubes and π-conjugated polymers, Phys. Rev. B 73, 075403 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Zhong Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ma, YZ., Hertel, T., Vardeny, Z.V., Fleming, G.R., Valkunas, L. (2007). Ultrafast Spectroscopy of Carbon Nanotubes. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds) Carbon Nanotubes. Topics in Applied Physics, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72865-8_10

Download citation

Publish with us

Policies and ethics