Skip to main content

Development of a Methodology for Automated Crater Detection on Planetary Images

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4477))

Included in the following conference series:

Abstract

This paper presents a methodology for the automated detection of impact craters on images of planetary surfaces. This modular approach includes a phase of candidate selection, followed by template matching and finally the analysis of a probability volume that allows for the identification of craters on the image. It is applied to a set of images of the surface of the planet Mars, with results that are very promising, in face of future improvements in the methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Flores-Méndez, A.: Crater Marking and Classification Using Computer Vision. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 79–86. Springer, Heidelberg (2003)

    Google Scholar 

  2. Magee, M., Chapman, C.R., Dellenback, S.W., Enke, B., Merline, W.J., Rigney, M.P.: Automated Identification of Martian Craters Using Image Processing. LPSC XXXIV, Abs. #1756 (2003)

    Google Scholar 

  3. Michael, G.: Coordinate Registration by Automated Crater Recognition. Planetary and Space Science 51, 563–568 (2003)

    Article  Google Scholar 

  4. Saraiva, J., Bandeira, L., Pina, P.: A Structured Approach to Automated CraterDetection. LPSC XXXVII, Abs. #1142 (2006)

    Google Scholar 

  5. Barata, T., Alves, E.I., Saraiva, J., Pina, P.: Automatic Recognition of Impact Craters on the Surface of Mars. In: Campilho, A.C., Kamel, M. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 489–496. Springer, Heidelberg (2004)

    Google Scholar 

  6. Kim, J.R., Muller, J.-P., van Gasselt, S., Morley, J.G., Neukum, G.: Automated Crater Detection, A New Tool for Mars Cartography and Chronology. Photogrammetric Engineering and Remote Sensing 71, 1205–1217 (2005)

    Google Scholar 

  7. Vinogradova, T., Burl, M., Mjolness, E.: Training of a Crater Detection Algorithm for Mars Crater Imagery. In: Proc. IEEE Aerospace Conference, vol. 7, pp. 3201–3211 (2002)

    Google Scholar 

  8. Plesko, C., Werner, S.C., Brumby, S.P., Asphaug, E.A., Neukum, G.: A Statistical Analysis of Automated Crater Counts in MOC and HRSC Data. LPSC XXXVII, Abs. #2012 (2006)

    Google Scholar 

  9. Leroy, B., Medioni, G.G., Johnson, E., Matthies, L.: Crater Detection for Autonomous Landing on Asteroids. Image and Vision Computing 19, 787–792 (2001)

    Article  Google Scholar 

  10. Cheng, Y., Johnson, A.E., Matthies, L., Olson, C.F.: Optical Landmark Detection for Spacecraft Navigation. In: Proc. 13th AAS/AIAA Space Flight Mech. Meet. (2003)

    Google Scholar 

  11. Scott, D.H., Carr, M.H.: Atlas of Mars (1:25000000). USGS, Denver (1978)

    Google Scholar 

  12. Alves, E.I., Vaz, D.: MIMS – A relational database of imagery on Mars. Computers & Geosciences, in press (2007)

    Google Scholar 

  13. Bandeira, L., Saraiva, J., Pina, P.: Enhancing Impact Crater Rims to Increase Recognition Rates. In: Proc. Int. Conf. Computer Vision Theory and Applications (2006)

    Google Scholar 

  14. Aggarwal, J.K., Davis, L.S., Martin, W.N.: Correspondence Process in Dynamic Scene Analysis. Proc. IEEE 69, 562–572 (1981)

    Article  Google Scholar 

  15. Frigo, M., Johnson, S.G.: FFTW: An Adaptive Software Architecture for the FFT. In: Proc. Int. Conf. Acoustics, Speech, and Signal Processing, vol. 3, pp. 1381–1384 (1998)

    Google Scholar 

  16. Soille, P.: Morphological image analysis. Principles and applications. Springer, Heidelberg (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joan Martí José Miguel Benedí Ana Maria Mendonça Joan Serrat

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Bandeira, L.P.C., Saraiva, J., Pina, P. (2007). Development of a Methodology for Automated Crater Detection on Planetary Images. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4477. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72847-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72847-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72846-7

  • Online ISBN: 978-3-540-72847-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics