Skip to main content

Pharmacological Interference with Protein-Protein Interactions Mediated by Coiled-Coil Motifs

  • Chapter
Protein-Protein Interactions as New Drug Targets

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 186))

Abstract

Coiled coils are bundles of intertwined α-helices that provide proteinprotein interaction sites for the dynamic assembly and disassembly of protein complexes. The coiled-coil motif combines structural versatility and adaptability with mechanical strength and specificity. Multimeric proteins that rely on coiledcoil interactions are structurally and functionally very diverse, ranging from simple homodimeric transcription factors to elaborate heteromultimeric scaffolding clusters. Several coiled-coil-bearing proteins are of outstanding pharmacological importance, most notably SNARE proteins involved in vesicular trafficking of neurotransmitters and viral fusion proteins. Together with their crucial roles in many physiological and pathological processes, the structural simplicity and reversible nature of coiled-coil associations render them a promising target for pharmacological interference, as successfully exemplified by botulinum toxins and viral fusion inhibitors.

The α-helical coiled coil is a ubiquitous protein domain that mediates highly specific homo- and heteromeric protein-protein interactions among a wide range of proteins. The coiled-coil motif was first proposed by Crick on the basis of X-ray diffraction data on α-keratin more than 50 years ago (Crick 1952, 1953) and nowadays belongs to the best-characterized protein interaction modules. By definition, a coiled coil is an oligomeric protein assembly consisting of several right-handed amphipathic α-helices that wind around each other into a superhelix (or a supercoil) in which the hydrophobic surfaces of the constituent helices are in continuous contact, forming a hydrophobic core. Both homomeric and heteromeric coiled coils with different stoichiometries are possible, and the helices can be aligned in either a parallel or an antiparallel topology (Harbury et al. 1993, 1994). Stoichiometry and topology are governed by the primary structure, that is, the sequence of the polypeptide chains, and a given protein can participate in multiple assemblydisassembly equilibria among several coiled coils differing in stoichiometry and topology (Portwich et al. 2007).

Protein complexes whose oligomeric quaternary structures — and, hence, biological activities — depend on coiled-coil interactions include transcription factors, tRNA synthetases (Biou et al. 1994; Cusack et al. 1990), cytoskeletal and signal-transduction proteins, enzyme complexes, proteins involved in vesicular trafficking, viral coat proteins, and membrane proteins (Langosch and Heringa 1998). It is thus not surprising that coiled-coil motifs have gained great attention as potential targets for modulating protein-protein interactions implicated in a large number of diseases.

In this review, we will first discuss some fundamental functional and structural aspects of a simple and well-characterized representative of coiled-coil transcription factors (Sect. 1) before considering two more complex coiled coils found in scaffolding proteins involved in mitosis and meiosis and vesicular trafficking Sect. 2). This will set the stage for addressing the role of coiled coils in viral infection (Sect. 3) as well as strategies of interfering with such protein-protein interactions therapeutically (Sect. 4 and 5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alber T (1992) Structure of the leucine zipper. Curr Opin Genet Dev 2:205–210

    Article  PubMed  CAS  Google Scholar 

  • Baker KA, Dutch RE, Lamb RA, Jardetzky TS (1999) Structural basis for paramyxovirus-mediated membrane fusion. Mol Cell 3:309–319

    Article  PubMed  CAS  Google Scholar 

  • Bennett MK (1995) SNAREs and the specificity of transport vesicle targeting. Curr Opin Cell Biol 7:581–586

    Article  PubMed  CAS  Google Scholar 

  • Bezprozvanny I, Scheller RH, Tsien RW (1995) Functional impact of syntaxin on gating of N-type and Q-type calcium channels. Nature 378:623–626

    Article  PubMed  CAS  Google Scholar 

  • Biou V, Yaremchuk A, Tukalo M, Cusack S (1994) The 2.9 Å crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA(Ser). Science 263:1404–1410

    Article  PubMed  CAS  Google Scholar 

  • Bullough PA, Hughson FM, Skehel JJ, Wiley DC (1994) Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371:37–43

    Article  PubMed  CAS  Google Scholar 

  • Carr CM, Kim PS (1993) A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73:823–832

    Article  PubMed  CAS  Google Scholar 

  • Chan DC, Fass D, Berger JM, Kim PS (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Wharton SA, Weissenhorn W, Calder LJ, Hughson FM, Skehel JJ, Wiley DC (1995) A soluble domain of the membrane-anchoring chain of influenza virus hemagglutinin (HA2) folds in Escherichia coli into the low-pH-induced confirmation. Proc Natl Acad Sci USA 92:12205–12209

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Lee KH, Steinhauer DA, Stevens DJ, Skehel JJ, Wiley DC (1998) Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 95:409–417

    Article  PubMed  CAS  Google Scholar 

  • Chernomordik LV, Kozlov MM (2005) Membrane hemifusion: crossing a chasm in two leaps. Cell 123:375–382

    Article  PubMed  CAS  Google Scholar 

  • Ciferri C, De Luca J, Monzani S, Ferrari KJ, Ristic D, Wyman C, Stark H, Kilmartin J, Salmon ED, Musacchio A (2005) Architecture of the human ndc80-hec1 complex, a critical constituent of the outer kinetochore. J Biol Chem 280:29088–29095

    Article  PubMed  CAS  Google Scholar 

  • Cleveland DW, Mao Y, Sullivan KF (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112:407–421

    Article  PubMed  CAS  Google Scholar 

  • Contegno F, Cioce M, Pelicci PG, Minucci S (2002) Targeting protein inactivation through an oligomerization chain reaction. Proc Natl Acad Sci USA 99:1865–1869

    Article  PubMed  CAS  Google Scholar 

  • Conway JF, Parry DA (1990) Structural features in the heptad substructure and longer range repeats of two-stranded α-fibrous proteins. Int J Biol Macromol 12:328–334

    Article  PubMed  CAS  Google Scholar 

  • Conway JF, Parry DA (1991) Three-stranded α-fibrous proteins: the heptad repeat and its implications for structure. Int J Biol Macromol 13:14–16

    Article  PubMed  CAS  Google Scholar 

  • Crick FHC (1952) Is α-keratin a coiled coil? Nature 170:882–883

    Article  PubMed  CAS  Google Scholar 

  • Crick FH (1953) The packing of α-helices: simple coiled coils. Acta Crystallogr 6:689–698

    Article  CAS  Google Scholar 

  • Cusack S, Berthet-Colominas C, Hartlein M, Nassar N, Leberman R (1990) A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å. Nature 347:249–255

    Article  PubMed  CAS  Google Scholar 

  • Dwyer JJ, Wilson KL, Davison DK, Freel SA, Seedorff JE, Wring SA, Tvermoes NA, Matthews TJ, Greenberg ML, Delmedico MK (2007) Design of helical, oligomeric HIV-1 fusion inhibitor peptides with potent activity against enfuvirtide-resistant virus. Proc Natl Acad Sci USA 104:12772–12777

    Article  PubMed  CAS  Google Scholar 

  • Ellenberger TE, Brandl CJ, Struhl K, Harrison, SC (1992) The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted r helices: crystal structure of the protein–DNA complex. Cell 71:1223–1237

    Article  PubMed  CAS  Google Scholar 

  • Eron JJ, Gulick RM, Bartlett JA, Merigan T, Arduino R, Kilby JM, Yangco B, Diers A, Drobnes C, DeMasi R, Greenberg M, Melby T, Raskino C, Rusnak P, Zhang Y, Spence R Miralles GD (2004) Short-term safety and antiretroviral activity of T-1249, a second-generation fusion inhibitor of HIV. J Infect Dis 189:1075–1083

    Article  PubMed  CAS  Google Scholar 

  • Fasshauer D, Sutton RB, Brünger AT, Jahn R (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci USA 95:15781–15786

    Article  PubMed  CAS  Google Scholar 

  • Gillingham AK, Munro S (2003) Long coiled-coil proteins and membrane traffic. Biochim Biophys Acta 1641:71–85

    Article  PubMed  CAS  Google Scholar 

  • Glover JN, Harrison SC (1995) Crystal structure of the heterodimeric bZIP transcription factor c-Fos–c-Jun bound to DNA. Nature 373:257–261

    Article  PubMed  CAS  Google Scholar 

  • Goldenberg DM (2003) Advancing role of radiolabeled antibodies in the therapy of cancer. Cancer Immunol Immunother 52:281–296

    PubMed  CAS  Google Scholar 

  • Gonzalez L, Jr, Woolfson, DN, Alber T (1996) Buried polar residues and structural specificity in the GCN4 leucine zipper. Nat Struct Biol 3:1011–1018

    Article  PubMed  CAS  Google Scholar 

  • Goodwin DA, Meares CF (2001) Advances in pretargeting biotechnology. Biotechnol Adv 19:435–450

    Article  PubMed  CAS  Google Scholar 

  • Hanson PI, Heuser JE, Jahn R (1997) Neurotransmitter release–four years of SNARE complexes. Curr Opin Neurobiol 7:310–315

    Article  PubMed  CAS  Google Scholar 

  • Harbury PB, Zhang T, Kim PS, Alber T (1993) A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262:1401–1407

    Article  PubMed  CAS  Google Scholar 

  • Harbury PB, Kim PS, Alber T (1994) Crystal structure of an isoleucine-zipper trimer. Nature 371:80–83

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch AG (1992) General and pathway-specific regulatory mechanisms controlling the synthesis of amino acid biosynthetic enzymes in Saccharomyces cerevisae. In: Broach JR, Jones EW, Pringle JR (eds) The molecular and cellular biology of the yeast Saccharomyces: gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 319–414

    Google Scholar 

  • Hinnebusch AG, Natarajan K (2002) Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell 1:22–32

    Article  PubMed  CAS  Google Scholar 

  • Hodges RS, Sodek J, Smillie LB, Jurasek L (1972) Tropomyosin: amino acid sequence and coiled coil structure. Cold Spring Harbor Symp Quant Biol 37:299–310

    Google Scholar 

  • Hodges RS, Zhu BY, Zhou NE, Mant CT (1994) Reversed-phase liquid chromatography as a useful probe of hydrophobic interactions involved in protein folding and protein stability. J Chromatogr A 676: 3–15

    Article  PubMed  CAS  Google Scholar 

  • Hurst HC (1994) Transcription factors 1: bZIP proteins. Protein Profile 1(2):123–168

    PubMed  CAS  Google Scholar 

  • Hurst HC (1995) Transcription factors 1: bZIP proteins. Protein Profile 2(2):101–168

    PubMed  CAS  Google Scholar 

  • Ito T, Suzuki Y, Takada A, Kawamoto A, Otsuki K, Masuda H, Yamada M, Suzuki T, Kida H, Kawaoka Y (1997) Differences in sialic acid–galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. J Virol 71:3357–3362

    PubMed  CAS  Google Scholar 

  • Jahn R, Niemann H (1994) Molecular mechanisms of clostridial neurotoxins. Ann NY Acad Sci 733:245–255

    Article  PubMed  CAS  Google Scholar 

  • Jiang S, Lin K, Strick N, Neurath, AR (1994) HIV-1 inhibition by a peptide. Nature 365:113

    Article  Google Scholar 

  • Jiang S, Lu H, Liu S, Zhao Q, He Y, Debnath AK (2004) N-substituted pyrrole derivatives as novel human immunodeficiency virus type 1 entry inhibitors that interfere with the gp41 six-helix bundle formation and block virus fusion. Antimicrob Agents Chemother 48:4349–4359

    Article  PubMed  CAS  Google Scholar 

  • Jin BS, Lee WK, Ahn K, Lee MK, Yu YG (2005) High-throughput screening method of inhibitors that block the interaction between two helical regions of HIV-1 gp41. Biomol Screen 10:13–19

    Article  CAS  Google Scholar 

  • Keller W, König P, Richmond TJ (1995) Crystal structure of a bZIP/DNA complex at 2.2 Å: determinants of DNA specific recognition. J Mol Biol 254:657–667

    Article  PubMed  CAS  Google Scholar 

  • Knappenberger JA, Smith JE, Thorpe SH, Zitzewitz JA, Matthews CR (2002) A buried polar residue in the hydrophobic interface of the coiled coil peptide, GCN4–p1, plays a thermodynamic, not a kinetic role in folding. J Mol Biol 321:1–6

    Article  PubMed  CAS  Google Scholar 

  • König P, Richmond TJ (1993) The X-ray structure of the GCN4-bZIP bound to ATF/CREB site DNA shows the complex depends on DNA flexibility. J Mol Biol 233:139–154

    Article  PubMed  Google Scholar 

  • Krylov D, Mikhailenko I, Vinson C (1994) A thermodynamic scale for leucine zipper stability and dimerization specificity: e and g interhelical interactions. EMBO J 13:2849–2861

    PubMed  CAS  Google Scholar 

  • Langosch D, Heringa J (1998) Interaction of transmembrane helices by a knobs-into-holes packing characteristic of soluble coiled coils. Proteins 31:150–159

    Article  PubMed  CAS  Google Scholar 

  • Lavigne P, Sonnichsen FD, Kay CM, Hodges RS, Lumb KJ, Kim PS (1996) Interhelical salt bridges, coiled coil stability, and specificity of dimerization. Science 271:1136–1138

    Article  PubMed  CAS  Google Scholar 

  • Li F, Pincet F, Perez E, Eng WS, Melia TJ, Rothman JE, Tareste D (2007) Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat Struct Mol Biol 14:890–896

    Article  PubMed  CAS  Google Scholar 

  • Lim EC, Seet RC (2007) Botulinum toxin, Quo Vadis? Med Hypotheses 69:718–723

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Rost B (2001) Comparing function and structure between entire proteomes. Protein Sci 10:1970–1979

    Article  PubMed  CAS  Google Scholar 

  • Lumb KJ, Kim PS (1995) Measurement of interhelical electrostatic interactions in the GCN4 leucine zipper. Science 268:436–439

    Article  PubMed  CAS  Google Scholar 

  • Maiato H, DeLuca J, Salmon ED, Earnshaw WC (2004) The dynamic kinetochore–microtubule interface. J Cell Sci 117:5461–5477

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Carbonero L (2004) Discontinuation of the clinical development of fusion inhibitor T1249. AIDS Rev 6:61

    Google Scholar 

  • McLachlan AD, Stewart M (1975) Tropomyosin coiled coil interactions: evidence for an unstaggered structure. J Mol Biol 98:293–304

    Article  PubMed  CAS  Google Scholar 

  • Newman JR, Keating AE (2003) Comprehensive identification of human bZIP interactions with coiled coil arrays. Science 300:2097–2101

    Article  PubMed  CAS  Google Scholar 

  • O’Shea EK, Rutkowski R, Kim PS (1989) Preferential heterodimer formation by isolated leucine zippers from fos and jun. Science 245:646–648

    Article  PubMed  Google Scholar 

  • O’Shea EK, Klemm JD, Kim PS, Alber T (1991) X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254:539–544

    Article  PubMed  Google Scholar 

  • O’Shea EK, Rutkowski R, Kim PS (1992) Mechanism of specificity in the Fos-Jun oncoprotein heterodimer. Cell 68:699–708

    Article  PubMed  Google Scholar 

  • Otaka A, Nakamura M, Nameki D, Kodama E, Uchiyama S, Nakamura S, Nakano H, Tamamura H, Kobayashi Y, Matsuoka M, Fujii N (2002) Remodeling of gp41–C34 peptide leads to highly effective inhibitors of the fusion of HIV-1 with target cells. Angew Chem Int Ed 41:2937–2940

    Article  Google Scholar 

  • Petka WA, Harden J L, McGrath KP, Wirtz D, Tirrell DA (1998) Reversible hydrogels from self-assembling artificial proteins. Science 281:389–392

    Article  PubMed  CAS  Google Scholar 

  • Portwich M, Keller S, Strauss HM, Mahrenholz CC, Kramer A, Kretzschmar I, Volkmer R (2007). A network of coiled-coil associations derived from synthetic GCN4 leucine-zipper arrays. Angew Chem Int Ed 46:1654–1657

    Article  CAS  Google Scholar 

  • Potekhin SA, Medvedkin VN, Kashparov IA, Venyaminov SY (1994) Synthesis and properties of the peptide corresponding to the mutant form of the leucine zipper of the transcriptional activator GCN4 from yeast. Protein Eng 7:1097–1101

    Article  PubMed  CAS  Google Scholar 

  • Schibli DJ, Weissenhorn W (2004) class I and class II viral fusion protein structures reveal similar principles in membrane fusion. Mol Membr Biol 21:361–371

    Article  PubMed  CAS  Google Scholar 

  • Schuette CG, Hatsuzawa K, Margittai M, Stein A, Riedel D, Küster P, König M, Seidel C, Jahn R (2004) Determinants of liposome fusion mediated by synaptic SNARE proteins. Proc Natl Acad Sci USA 101:2858–2863

    Article  PubMed  CAS  Google Scholar 

  • Sieber JJ, Willig KI, Heintzmann R, Hell SW, Lang T (2006) The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane. Biophys J 90:2843–2851

    Article  PubMed  CAS  Google Scholar 

  • Sieber JJ, Willig KI, Kutzner C, Gerding-Reimers C, Harke B, Donnert G, Rammner B, Eggeling C, Hell SW, Grubmüller H, Lang T (2007) Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317:1072–1076

    Article  PubMed  CAS  Google Scholar 

  • Skehel JJ, Wiley DJ (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569

    Article  PubMed  CAS  Google Scholar 

  • Sodek J, Hodges RS, Smillie LB, Jurasek L (1972) Amino-acid sequence of rabbit skeletal tropomyosin and its coiled-coil structure. Proc Natl Acad Sci USA 69:3800–3804

    Article  PubMed  CAS  Google Scholar 

  • Söllner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–324

    Article  PubMed  Google Scholar 

  • Stein A, Radhakrishnan A, Riedel D, Fasshauer D, Jahn R (2007) Synaptotagmin activates membrane fusion through a Ca2+-dependent trans interaction with phospholipids. Nat Struct Mol Biol 14:904–911

    Article  PubMed  CAS  Google Scholar 

  • Steinert PM (1993) Structure, function, and dynamics of keratin intermediate filaments. J Invest Dermatol 100:729–734

    Article  PubMed  CAS  Google Scholar 

  • Sutton RB, Fasshauer D, Jahn R, Brünger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395:347–353

    Article  PubMed  CAS  Google Scholar 

  • Tan K, Liu, J, Wang J-H, Shen S, Lu M (1997) Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc Natl Acad Sci USA 94:12303–12308

    Article  PubMed  CAS  Google Scholar 

  • Vinson CR, Sigler PB, McKnight SL (1989) Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246:911–916

    Article  PubMed  CAS  Google Scholar 

  • Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Söllner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    Article  PubMed  CAS  Google Scholar 

  • Wei RR, Sorger PK, Harrison SC (2005) Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc Natl Acad Sci USA 102:5363–5367

    Article  PubMed  CAS  Google Scholar 

  • Wei RR, Schnell JR, Larsen NA, Sorger PK, Chou JJ, Harrison SC (2006) Structure of a central component of the yeast kinetochore: the Spc24p/Spc25p globular domain. Structure 14:1003–1009

    Article  PubMed  CAS  Google Scholar 

  • Wei RR, Al-Bassam J, Harrison SC (2007) The Ndc80/HEC1 complex is a contact point for kinetochore–microtubule attachment. Nat Struct Mol Biol 14:54–59

    Article  PubMed  CAS  Google Scholar 

  • Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–430

    Article  PubMed  CAS  Google Scholar 

  • Weissenhorn W, Hinz A, Gaudin Y (2007) Virus membrane fusion. FEBS Lett 581:2150–2155

    Article  PubMed  CAS  Google Scholar 

  • Wharton SA, Skehel JJ, Wiley DC (1986) Studies of influenza haemagglutinin-mediated membrane fusion. Virology 149:27–35

    Article  PubMed  CAS  Google Scholar 

  • Wigge PA, Kilmartin JV (2001) The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol 152:349–360

    Article  PubMed  CAS  Google Scholar 

  • Wild C, Oas T, McDanal CB, Bolognesi D, Matthews T (1992) A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc Natl Acad Sci USA 89:10537–10541

    Article  PubMed  CAS  Google Scholar 

  • Wild C, Shugars DC, Greenwell TK, McDanal CB, Matthews TJ (1994) Peptides corresponding to a predictive α-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci USA 91:9770–9774

    Article  PubMed  CAS  Google Scholar 

  • Wilson IA, Skehel JJ, Wiley DC (1981) Structure of the haemeagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289:366–373

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strauss, H.M., Keller, S. (2008). Pharmacological Interference with Protein-Protein Interactions Mediated by Coiled-Coil Motifs. In: Klussmann, E., Scott, J. (eds) Protein-Protein Interactions as New Drug Targets. Handbook of Experimental Pharmacology, vol 186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72843-6_19

Download citation

Publish with us

Policies and ethics