Skip to main content

Best Basis Compressed Sensing

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

This paper proposes an extension of compressed sensing that allows to express the sparsity prior in a dictionary of bases. This enables the use of the random sampling strategy of compressed sensing together with an adaptive recovery process that adapts the basis to the structure of the sensed signal. A fast greedy scheme is used during reconstruction to estimate the best basis using an iterative refinement. Numerical experiments on sounds and geometrical images show that adaptivity is indeed crucial to capture the structures of complex natural signals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory, Submitted (2004)

    Google Scholar 

  2. Donoho, D.: Compressed sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  3. Skarda, C.A., Freeman, W.J.: Does the brain make chaos in order to make sense of the world? Behavioral and Brain Sciences 10, 161–165 (1987)

    Article  Google Scholar 

  4. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  5. Donoho, D.: Wedgelets: Nearly minimax estimation of edges. Annals of Statistics 27(3), 859–897 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Le Pennec, E., Mallat, S.: Bandelet Image Approximation and Compression. SIAM Multiscale Modeling and Simulation 4(3), 992–1039 (2005)

    Article  MATH  Google Scholar 

  7. Coifman, R., Wickerhauser, V.: Entropy-based algorithms for best basis selection. IEEE Trans. Inform. Theory 38(2), 713–718 (1992)

    Article  MATH  Google Scholar 

  8. Candès, E., Donoho, D.: New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Comm. Pure Appl. Math. 57(2), 219–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hubel, D., Wiesel, T.: Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology (London) 195, 215–243 (1968)

    Google Scholar 

  10. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive-field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)

    Article  Google Scholar 

  11. Lee, T.S.: Computations in the early visual cortex. J. Physiol. Paris 97(2-3), 121–139 (2003)

    Article  Google Scholar 

  12. Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comp. 20(1), 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  13. Daubechies, I., Defrise, M., Mol, C.D.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57, 1413–1541 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Figueiredo, M., Nowak, R.: An em algorithm for wavelet-based image restoration. IEEE Transactions on Image Processing 12(8), 906–916 (2003)

    Article  MathSciNet  Google Scholar 

  15. Candès, E., Romberg, J.: Practical signal recovery from random projections. IEEE Trans. Signal Processing, Submitted (2005)

    Google Scholar 

  16. Tropp, J., Gilbert, A.C.: Signal recovery from partial information via orthogonal matching pursuit. Preprint (2005)

    Google Scholar 

  17. Donoho, D.L., et al.: Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit. Preprint (2006)

    Google Scholar 

  18. Donoho, D., Tsaig, Y.: Extensions of compressed sensing. Preprint (2004)

    Google Scholar 

  19. Le Pennec, E., Mallat, S.: Sparse geometric image representations with bandelets. IEEE Transactions on Image Processing 14(4), 423–438 (2005)

    Article  MathSciNet  Google Scholar 

  20. Peyré, G., Mallat, S.: Surface compression with geometric bandelets. ACM Transactions on Graphics (SIGGRAPH’05) 24(3) (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Peyré, G. (2007). Best Basis Compressed Sensing. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics