Skip to main content

Numerical Invariantization for Morphological PDE Schemes

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

Based on a new, general formulation of the geometric method of moving frames, invariantization of numerical schemes has been established during the last years as a powerful tool to guarantee symmetries for numerical solutions while simultaneously reducing the numerical errors. In this paper, we make the first step to apply this framework to the differential equations of image processing. We focus on the Hamilton–Jacobi equation governing dilation and erosion processes which displays morphological symmetry, i.e. is invariant under strictly monotonically increasing transformations of gray-values. Results demonstrate that invariantization is able to handle the specific needs of differential equations applied in image processing, and thus encourage further research in this direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, L., et al.: Axioms and fundamental equations in image processing. Archive for Rational Mechanics and Analysis 123, 199–257 (1993)

    Google Scholar 

  2. Alvarez, L., Lions, P.-L., Morel, J.-M.: Image selective smoothing and edge detection by nonlinear diffusion. II. SIAM Journal on Numerical Analysis 29, 845–866 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, F.: Geometric Curve Evolution and Image Processing. Lecture Notes in Mathematics, vol. 1805. Springer, Berlin (2003)

    MATH  Google Scholar 

  4. Cartan, É.: La méthode du repère mobile, la théorie des groupes continus, et les espaces généralisés. Exposés de Géométrie, vol. 5. Hermann, Paris (1935)

    MATH  Google Scholar 

  5. Breuß, M., Weickert, J.: A shock-capturing algorithm for the differential equations of dilation and erosion. Journal of Mathematical Imaging and Vision, in press.

    Google Scholar 

  6. Brockett, R.W., Maragos, P.: Evolution equations for continuous-scale morphological filtering. IEEE Transactions on Signal Processing 42, 3377–3386 (1994)

    Article  Google Scholar 

  7. Fels, M., Olver, P.J.: Moving coframes. II. Acta Appl. Math. 55, 127–208 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gage, M., Hamilton, R.S.: The heat equation shrinking convex plane curves. Journal of Differential Geometry 23, 69–96 (1986)

    MathSciNet  MATH  Google Scholar 

  9. Grayson, M.: The heat equation shrinks embedded plane curves to round points. Journal of Differential Geometry 26, 285–314 (1987)

    MathSciNet  MATH  Google Scholar 

  10. Kim, P.: Invariantization of Numerical Schemes for Differential Equations Using Moving Frames. Ph.D. Thesis, University of Minnesota, Minneapolis (2006)

    Google Scholar 

  11. Kim, P.: Invariantization of the Crank-Nicholson Method for Burgers’ Equation. Preprint, University of Minnesota, Minneapolis.

    Google Scholar 

  12. Kim, P., Olver, P.J.: Geometric integration via multi-space. Regular and Chaotic Dynamics 9(3), 213–226 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kimmel, R.: Numerical Geometry of Images. Springer, Berlin (2004)

    MATH  Google Scholar 

  14. Lax, P.D.: Gibbs Phenomena. Journal of Scientific Computing 28, 445–449 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mathéron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)

    MATH  Google Scholar 

  16. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)

    MATH  Google Scholar 

  17. Olver, P.J.: Geometric foundations of numerical algorithms and symmetry. Applicable Algebra in Engineering, Communication and Computing 11, 417–436 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Olver, P.J.: A survey of moving frames. In: Li, H., Olver, P.J., Sommer, G. (eds.) IWMM-GIAE 2004. LNCS, vol. 3519, pp. 105–138. Springer, Heidelberg (2005)

    Google Scholar 

  19. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  20. Sapiro, G., Tannenbaum, A.: Affine invariant scale-space. International Journal of Computer Vision 11, 25–44 (1993)

    Article  Google Scholar 

  21. Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, London (1982)

    Google Scholar 

  22. Sethian, J.A.: Level Set Methods. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Welk, M., Kim, P., Olver, P.J. (2007). Numerical Invariantization for Morphological PDE Schemes. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics