Skip to main content

Anisotropic α-Kernels and Associated Flows

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

The Laplacian raised to fractional powers can be used to generate scale spaces as was shown in recent literature by Duits et al. In this paper, we study the anisotropic diffusion processes by defining new generators that are fractional powers of an anisotropic scale space generator. This is done in a general framework that allows us to explain the relation between a differential operator that generates the flow and the generators that are constructed from its fractional powers. We then generalize this to any other function of the operator. We discuss important issues involved in the numerical implementation of this framework and present several examples of fractional versions of the Perona-Malik flow along with their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ijima, T.: Theory of pattern recognition. Electronics and Communications in Japan, 123–134 (1963)

    Google Scholar 

  2. Witkin, A.P.: Scale-space filtering. In: Proc. of Eighth Int. Joint Conf. on Artificial Intelligence, vol. 2 (1983)

    Google Scholar 

  3. Koenderink, J.J.: The structure of images. Biol. Cybern. 50, 363–370 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Weickert, J., Ishikawa, S., Imiya, A.: Linear scale-space has first been proposed in japan. Journal of Mathematical Imaging and Vision 10, 237–252 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Sochen, N.A.: Stochastic processes in vision: From langevin to beltrami. In: ICCV 2001, pp. 288–293 (2001)

    Google Scholar 

  6. Unal, G.B., Krim, H., Yezzi, A.J.: Stochastic differential equations and geometric flows. IEEE Transactions on Image Processing 11(12), 1405–1416 (2002)

    Article  MathSciNet  Google Scholar 

  7. Rosenau, P.: Extension of landau-ginzburg free-energy functions to high-gradients domains. Phys. Rev. A (Rapid Communications) 39(12), 6614–6617 (1989)

    Article  MathSciNet  Google Scholar 

  8. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE T. Pattern Anal. 12(7), 629–639 (1990)

    Article  Google Scholar 

  9. Pauwels, E.J., et al.: An extended class of scale-invariant and recursive scale space filters. In: PAMI, vol. 17, pp. 691–701 (1995)

    Google Scholar 

  10. Duits, R., et al.: α scale spaces on a bounded domain. In: Griffin, L.D., Lillholm, M. (eds.) Scale Space Methods in Computer Vision. LNCS, vol. 2695, pp. 494–510. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Felsberg, M., Duits, R., Florack, L.: The monogenic scale space on a bounded domain and its applications. In: Proc. Scale-Space 2003, pp. 209–224 (2003)

    Google Scholar 

  12. Duits, R., et al.: On the axioms of scale space theory. JMIV 20, 267–298 (2004)

    Article  Google Scholar 

  13. Felsberg, M., Sommer, G.: The monogenic scale-space: A unifying approach to phase-based image processing in scale-space. JMIV 21, 5–26 (2004)

    Article  MathSciNet  Google Scholar 

  14. Nadler, B., et al.: Diffusion maps, spectral clustering and eigenfunctions of fokker-planck operators. In: Neural Information Processing Systems (NIPS) (2005)

    Google Scholar 

  15. Lehoucq, R., Sorensen, D., Yang, C.: ARPACK User’s Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (1997)

    Google Scholar 

  16. Sorense, D.: Implicitly restarted arnoldi/lanczos methods for large scale eigenvalue calculations. Technical Report TR-96-40, Department of Computational and Applied Mathematics, Rice University (1995)

    Google Scholar 

  17. Trefethen, L.N., Bau, D.: Numerical linear algebra. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Feigin, M., Sochen, N., Vemuri, B.C. (2007). Anisotropic α-Kernels and Associated Flows. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics