Skip to main content

Fast and Accurate Gaussian Derivatives Based on B-Splines

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Abstract

Gaussian derivatives are often used as differential operators to analyze the structure in images. In this paper, we will analyze the accuracy and computational cost of the most common implementations for differentiation and interpolation of Gaussian-blurred multi-dimensional data. We show that – for the computation of multiple Gaussian derivatives – the method based on B-splines obtains a higher accuracy than the truncated Gaussian at equal computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hadamard, J.: Sur les problèmes aux Dérivées Partielles et leur Signification Physique. Bulletin, Princeton University 13, 49–62 (1902)

    Google Scholar 

  2. Schwartz, L.: Théorie des distributions. In: Actualités Scientifiques et Industrielles, Institut de Mathématique, Université de Strasbourg, vol. 1, 2, pp. 1091–1122 (1951)

    Google Scholar 

  3. Florack, L.M.J.: Image Structure. Kluwer Academic Publ., Dordrecht (1997)

    Google Scholar 

  4. Duits, R., et al.: On the axioms of scale-space theory. J. Mathematical Imaging and Vision 20(3), 267–298 (2004)

    Article  Google Scholar 

  5. ter Haar Romeny, B.M.: Front-End Vision and Multi-Scale Image Analysis. Kluwer Academic Publ., Dordrecht (2003)

    Google Scholar 

  6. Masutani, Y., MacMahon, H., Doi, K.: Computerized detection of pulmonary embolism in spiral CT angiography based on volumetric image analysis. IEEE Trans. Medical Imaging 21(12), 1517–1523 (2002)

    Article  Google Scholar 

  7. Frigo, M., Johnson, S.G.: An FFT compiler. Proc. IEEE 93(2), 216–231 (2005)

    Article  Google Scholar 

  8. Florack, L.M.J.: A spatio-frequency trade-off scale for scale-space filtering. IEEE Trans. Pattern Analysis and Machine Intelligence 22(9), 1050–1055 (2000)

    Article  Google Scholar 

  9. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

  10. Deriche, R.: Fast algorithms for low-level vision. IEEE Trans. Pattern Analysis and Machine Intelligence 12(1), 78–87 (1990)

    Article  Google Scholar 

  11. van Vliet, L.J., Young, I.T., Verbeek, P.W.: Recursive Gaussian derivative filters. In: Proc. Int. Conf. Pattern Recognition (ICPR), vol. 1, pp. 509–514 (1998)

    Google Scholar 

  12. Young, I.T., van Vliet, L.J.: Recursive implementation of the Gaussian filter. Signal Processing 44, 139–151 (1995)

    Article  Google Scholar 

  13. van den Boomgaard, R., van der Weij, R.: Gaussian convolutions, numerical approximations based on interpolation. In: Kerckhove, M. (ed.) Scale-Space 2001. LNCS, vol. 2106, pp. 205–214. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Communications 31(4), 532–540 (1983)

    Article  Google Scholar 

  15. Crowley, J.L., Stern, R.M.: Computation of the difference of low-pass transform. IEEE Trans. Pattern Analysis and Machine Intelligence 6(2), 212–222 (1984)

    MATH  Google Scholar 

  16. Lindeberg, T.: Discrete derivative approximations with scale-space properties: A basis for low-level feature extraction. J. Mathematical Imaging and Vision 3(4), 349–376 (1993)

    Article  Google Scholar 

  17. Wells, M.: Efficient synthesis of Gaussian filters by cascaded uniform filters. IEEE Trans. Pattern Analysis and Machine Intelligence 8(2), 234–239 (1986)

    Google Scholar 

  18. Wang, Y.P., Lee, S.L.: Scale space derived from B-splines. IEEE Trans. Pattern Analysis and Machine Intelligence 20(10), 1040–1055 (1998)

    Article  Google Scholar 

  19. Abdou, I.E., Pratt, W.K.: Quantitative design and evaluation of enhancement/thresholding edge detectors. Proc. IEEE 67(5), 753–763 (1979)

    Google Scholar 

  20. Nalwa, V.S., Binford, T.O.: On detecting edges. IEEE Trans. Pattern Analysis and Machine Intelligence 8(6), 699–714 (1986)

    Article  Google Scholar 

  21. Torre, V., Poggio, T.A.: On edge detection. IEEE Trans. Pattern Analysis and Machine Intelligence 8(2), 147–163 (1986)

    Google Scholar 

  22. Marschner, S.R., Lobb, R.J.: An evaluation of reconstruction filters for volume rendering. In: Proc. IEEE Visualization, pp. 100–107 (1994)

    Google Scholar 

  23. Meijering, E.H.W., Niessen, W.J., Viergever, M.A.: The sinc-approximating kernels of classical polynomial interpolation. Proc. IEEE Int. Conf. Image Processing. 3, 652–656 (1999)

    Google Scholar 

  24. Meijering, E.H.W., Niessen, W.J., Viergever, M.A.: Quantitative evaluation of convolution-based methods for medical image interpolation. Medical Image Processing 5(2), 111–126 (2001)

    Article  Google Scholar 

  25. Jacob, M., Blu, T., Unser, M.: Sampling of periodic signals: A quantitative error analysis. IEEE Trans. Signal Processing 50(5), 1153–1159 (2002)

    Article  MathSciNet  Google Scholar 

  26. Lehmann, T.M., Gönner, C., Spitzer, K.: Survey: Interpolation methods in medical image processing. IEEE Trans. Medical Imaging 18(11), 1049–1075 (1999)

    Article  Google Scholar 

  27. Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing: Part I: Theory, and Part II: Efficient design and applications. IEEE Trans. Signal Processing 41(2), 821–848 (1993)

    Article  MATH  Google Scholar 

  28. Unser, M.: Splines, a perfect fit for signal and image processing. IEEE Signal Processing Magazine, 22–38 (1999)

    Google Scholar 

  29. Jury, E.I.: Theory and Application of the Z-Transform Method. John Wiley and Sons, New York (1964)

    Google Scholar 

  30. Unser, M., Aldroubi, A., Eden, M.: On the asymptotic convergence of B-spline wavelets to Gabor functions. IEEE Trans. Inf. Theory 38(2), 864–872 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Bouma, H., Vilanova, A., Bescós, J.O., ter Haar Romeny, B.M., Gerritsen, F.A. (2007). Fast and Accurate Gaussian Derivatives Based on B-Splines. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics