Skip to main content

Salient Regions from Scale-Space Trees

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

Extracting regions that are noticeably different from their surroundings, so called salient regions, is a topic of considerable interest for image retrieval. There are many current techniques but it has been shown that SIFT and MSER regions are among the best. The SIFT methods have their basis in linear scale-space but less well known is that MSERs are based on a non-linear scale-space. We demonstrate the connection between MSERs and morphological scale-space. Using this connection, MSERs can be enhanced to form a saliency tree which we evaluate via its effectiveness at a standard image retrieval task. The tree out-performs scale-saliency methods. We also examine the robustness of the tree using another standard task in which patches are compared across images transformations such as illuminant change, perspective transformation and so on. The saliency tree is one of the best performing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kadir, T., Brady, M.: Saliency, scale and image description. International Journal of Computer Vision 45(2), 83–105 (2001)

    Article  MATH  Google Scholar 

  2. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: Proceedings of the International Conference on Computer Vision, vol. 2, Oct. 2003, pp. 1470–1477 (2003), http://www.robots.ox.ac.uk/~vgg

  3. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  4. Koenderink, J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lindeberg, T.: Scale-space theory in computer vision. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  6. Mikolajczyk, K., et al.: A comparison of affine region detectors. International Journal of Computer Vision 65(1-2), 43–72 (2005)

    Article  Google Scholar 

  7. Matas, J., et al. (In: Proceedings of the BMVC ’02, Cardiff, England)

    Google Scholar 

  8. Lan, Y., Harvey, R., Torres, J.R.P.: Finding stable salient contours. In: Proceedings of the BMVC ’05, vol. 1, Oxford, England, September 2005, pp. 30–39 (2005)

    Google Scholar 

  9. Hare, J.S., Lewis, P.H.: Salient regions for query by image content. In: Enser, P.G.B., et al. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 317–325. Springer, Heidelberg (2004)

    Google Scholar 

  10. Bangham, J.A., Harvey, R., Ling, P.D.: Morphological scale-space preserving transforms in many dimensions. Journal of Electronic Imaging 5(3), 283–299 (1996)

    Article  Google Scholar 

  11. Gimenez, D., Evans, A.N.: Colour morphological scale-spaces for image segmentation. In: Proceedings of the BMVC ’05, vol. 2, Oxford, England, pp. 909–918 (2005)

    Google Scholar 

  12. Lifshitz, L.M., Pizer, S.M.: A multiresolution hierarchical approach to image segmentation based on intensity extrema. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(6), 529–540 (1990)

    Article  Google Scholar 

  13. Moravec, K., Harvey, R.W., Bangham, J.A.: Scale trees for stereo vision. IEE Proceedings-Vision Image and Signal Processing 147(4), 363–370 (2000)

    Article  Google Scholar 

  14. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of the ACM 22, 215–225 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  15. Harvey, R.W., Bangham, J.A., Bosson, A.: Some morphological scale-space filters and their properties. In: ter Haar Romeny, B.M., Florack, L.M.J., Viergever, M.A. (eds.) Scale-Space 1997. LNCS, vol. 1252, pp. 341–344. Springer, Heidelberg (1997)

    Google Scholar 

  16. Arya, S., Mount, D.M.: Approximate nearest neighbor queries in fixed dimensions. In: SODA ’93: Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms, Austin, Texas, United States, pp. 271–280. Society for Industrial and Applied Mathematics, Philadelphia (1993)

    Google Scholar 

  17. Gibson, S., Harvey, R.: Morphological color quantization. In: Proceedings of CVPR (2), vol. 2, pp. 525–530 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Perez Torres, J.R., Lan, Y., Harvey, R. (2007). Salient Regions from Scale-Space Trees. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics