Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

In order to define a metric on jet space, linear scale space is considered from a statistical standpoint. Given a scale σ, the scale space solution can be interpreted as maximizing a certain Gaussian posterior probability, related to a particular Tikhonov regularization. The Gaussian prior, which governs this solution, in fact induces a Mahalanobis distance on the space of functions. This metric on the function space gives, in a rather precise way, rise to a metric on n-jets. The latter, in turn, can be employed to define a norm on jet space, as the metric is translation invariant and homogeneous. Recently, [1] derived a metric on jet space and our results reinforce his findings, while providing a totally different approach to defining a scale space jet metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Griffin, L.D.: The 2nd order local-image-structure solid. IEEE Transactions on Pattern Analysis and Machine Intelligence (in press)

    Google Scholar 

  2. Cao, G., Chen, J., Jiang, J.: A novel local invariant descriptor adapted to mobile robot vision. In: Proceedings of the 2004 American Control Conference, vol. 3, pp. 2196–2201 (2004)

    Google Scholar 

  3. Gevers, T., Smeulders, A.W.M.: Image retrieval by multi-scale illumination invariant indexing. In: Ip, H.H.-S., Smeulders, A.W.M. (eds.) MINAR 1998. LNCS, vol. 1464, pp. 96–108. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. van Ginneken, B., Stegmann, M.B., Loog, M.: Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Medical Image Analysis 10, 19–40 (2006)

    Article  Google Scholar 

  5. Kanters, F., et al.: Content based image retrieval using multiscale top points. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 33–43. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Lillholm, M., Pedersen, K.S.: Jet based feature classification. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 2 (2004)

    Google Scholar 

  7. Pham, T.V., Smeulders, A.W.M.: Sparse representation for coarse and fine object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 555–567 (2006)

    Article  Google Scholar 

  8. Ravela, S., Manmatha, R.: Retrieving images by appearance. In: Proceedings of the 6th International Conference on Computer Vision, pp. 608–613 (1998)

    Google Scholar 

  9. Schmid, C., Mohr, R.: Local grayvalue invariants for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 530–535 (1997)

    Article  Google Scholar 

  10. Eberly, D.: A differential geometric approach to anisotropic diffusion. In: Geometry-Driven Diffusion in Computer Vision, pp. 371–392. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  11. Eberly, D.: Ridges in Image and Data Analysis. Kluwer Academic Publishers, Dordrecht (1996)

    MATH  Google Scholar 

  12. Florack, L.M.J.: Deep structure from a geometric point of view. In: Fogh Olsen, O., Florack, L.M.J., Kuijper, A. (eds.) DSSCV 2005. LNCS, vol. 3753, pp. 135–145. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Griffin, L.D., Lillholm, M.: Hypotheses for image features, icons and textons. International Journal of Computer Vision 70, 213–230 (2006)

    Article  Google Scholar 

  14. Koenderink, J.J., van Doorn, A.J.: Receptive field assembly specificity. Journal of Visual Communication and Image Representation 3, 1–12 (1992)

    Article  Google Scholar 

  15. Koenderink, J.J., van Doorn, A.J.: Metamerism in complete sets of image operators. In: Advances in Image Understading ’96, pp. 113–129 (1996)

    Google Scholar 

  16. Lillholm, M., Nielsen, M., Griffin, L.D.: Feature-based image analysis. International Journal of Computer Vision 52, 73–95 (2003)

    Article  Google Scholar 

  17. Nielsen, M., Florack, L.M.J., Deriche, R.: Regularization, scale-space, and edge detection filters. Journal of Mathematical Imaging and Vision 7, 291–307 (1997)

    Article  MathSciNet  Google Scholar 

  18. Tikhonov, A.N., Arseninn, V.Y.: Solution of Ill-Posed Problems. Winston and Sons, Washington (1977)

    Google Scholar 

  19. Marroquin, J., Mitter, S., Poggio, T.: Probabilistic solution of ill-posed problems in computational vision. Journal of the American Statistical Association 82, 76–89 (1987)

    Article  MATH  Google Scholar 

  20. Wahba, G.: Spline models for observational data. Society for Industrial and Applied Mathematics, Philadelphia (1990)

    MATH  Google Scholar 

  21. Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning. MIT Press, Cambridge (2005)

    Google Scholar 

  22. Loog, M.: Support blob machines. the sparsification of linear scale space. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 14–24. Springer, Heidelberg (2004)

    Google Scholar 

  23. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis. John Wiley & Sons, Chichester (1984)

    MATH  Google Scholar 

  24. Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Processes. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  25. Baxter, J.: Learning internal representations. In: Proceedings of the eighth annual conference on computational learning theory, New York, USA, pp. 311–320. ACM Press, New York (1995)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Loog, M. (2007). The Jet Metric. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics