Skip to main content

Paretian Similarity for Partial Comparison of Non-rigid Objects

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

In this paper, we address the problem of partial comparison of non-rigid objects. We introduce a new class of set-valued distances, related to the concept of Pareto optimality in economics. Such distances allow to capture intrinsic geometric similarity between parts of non-rigid objects, obtaining semantically meaningful comparison results. The numerical implementation of our method is computationally efficient and is similar to GMDS, a multidimensional scaling-like continuous optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borg, I., Groenen, P.: Modern multidimensional scaling - theory and applications. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  2. Bowyer, K.W., Chang, K., Flynn, P.: A survey of 3D and multi-modal 3D+2D face recognition. Dept. of Computer Science and Electrical Engineering Technical report, University of Notre Dame (January 2004)

    Google Scholar 

  3. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Calculus of non-rigid surfaces for geometry and texture manipulation. IEEE Trans. Visualization and Computer Graphics, in press (2006)

    Google Scholar 

  4. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Robust Expression-Invariant Face Recognition from Partially Missing Data. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 396–408. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Bruckstein, A.M., et al.: Matching Two-Dimensional Articulated Shapes Using Generalized Multidimensional Scaling. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2006. LNCS, vol. 4069, pp. 48–57. Springer, Heidelberg (2006)

    Google Scholar 

  6. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Expression-invariant 3D face recognition. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 62–69. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Three-dimensional face recognition. IJCV 64(1), 5–30 (2005)

    Article  Google Scholar 

  8. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Efficient computation of isometry-invariant distances between surfaces. SIAM Journal Scientific Computing 28, 1812–1836 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Facetoface: An Isometric Model for Facial Animation. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2006. LNCS, vol. 4069, pp. 38–47. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. PNAS 103(5), 1168–1172 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bronstein, M.M., et al.: A multigrid approach for multidimensional scaling. In: Copper Mountain Conf. Multigrid Methods (2005)

    Google Scholar 

  12. Bronstein, M.M., et al.: Multigrid multidimensional scaling. Numerical Linear Algebra with Applications 1313, 149–171 (2006)

    Article  MathSciNet  Google Scholar 

  13. Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry. Graduate studies in mathematics, vol. 33. American Mathematical Society (2001)

    Google Scholar 

  14. Charpiat, G., Faugeras, O., Keriven, R.: Approximations of shape metrics and application to shape warping and empirical shape statistics. Found. Comput. Math. 5(1), 1–58 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. de Rooij, S., Vitanyi, P.: Approximating rate-distortion graphs of individual data: Experiments in lossy compression and denoising. IEEE Trans. Information Theory, submitted (2006)

    Google Scholar 

  16. Elad, A., Kimmel, R.: Bending invariant representations for surfaces. Proc. CVPR, pp. 168–174 (2001)

    Google Scholar 

  17. Everson, R.M., Fieldsend, J.E.: Multi-class ROC analysis from a multi-objective optimization perspective. Pattern Recognition Letters 27(8), 918–927 (2006)

    Article  Google Scholar 

  18. Gromov, M.: Structures métriques pour les variétés riemanniennes. Textes Mathématiques, vol. 1 (1981)

    Google Scholar 

  19. Hoffman, D., Richards, W.: Parts of recognition. In: Pinker, S. (ed.) Visual cognition, MIT Press, Cambridge (1984)

    Google Scholar 

  20. Hong, B.W., et al.: Shape representation based on integral kernels: Application to image matching and segmentation. In: Proc. CVPR, pp. 833–840 (2006)

    Google Scholar 

  21. Jacobs, D., Weinshall, D., Gdalyahu, Y.: Class representation and image retrieval with non-metric distances. IEEE Trans. PAMI 22, 583–600 (2000)

    Google Scholar 

  22. Kimmel, R., Sethian, J.A.: Computing geodesic on manifolds. PNAS 95, 8431–8435 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Latecki, L.J., Lakaemper, R., Wolter, D.: Optimal partial shape similarity. Image and Vision Computing 23, 227–236 (2005)

    Article  Google Scholar 

  24. Ling, H., Jacobs, D.: Using the inner-distance for classification of articulated shapes. In: Proc. CVPR (2005)

    Google Scholar 

  25. Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics 5(3), 313–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pentland, A.: Recognition by parts. In: Proc. ICCV, 1987, pp. 612–620 (1987)

    Google Scholar 

  27. Geiger, D., et al.: Determining the similarity of deformable shapes. Vision Research 38, 2365–2385 (1998)

    Article  Google Scholar 

  28. Reuter, M., Wolter, F.-E., Peinecke, N.: Laplace-Beltrami spectra as shape-DNA of surfaces and solids. Computer-Aided Design 38, 342–366 (2006)

    Article  Google Scholar 

  29. Salukwadze, M.E.: Vector-valued optimization problems in control theory. Academic Press, London (1979)

    Google Scholar 

  30. Zhang, J., Collins, R., Liu, Y.: Representation and matching of articulated shapes. In: Proc. CVPR, vol. 2, June 2004, pp. 342–349 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Bronstein, A.M., Bronstein, M.M., Bruckstein, A.M., Kimmel, R. (2007). Paretian Similarity for Partial Comparison of Non-rigid Objects. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics