Skip to main content

Segmentation Under Occlusions Using Selective Shape Prior

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Abstract

In this work, we address the problem of segmenting multiple objects, with possible occlusions, in a variational setting. Most segmentation algorithms based on low-level features often fail under uncertainties such as occlusions and subtle boundaries. We introduce a segmentation algorithm incorporating high-level prior knowledge which is the shape of objects of interest. A novelty in our approach is that prior shape is introduced in a selective manner, only to occluded boundaries. Further, a direct application of our framework is that it solves the segmentation with depth problem that aims to recover the spatial order of overlapping objects for certain classes of images. We also present segmentation results on synthetic and real images.

Supported by ONR grant N00014-06-1-0345 and NSF grant DMS-0610079.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: ICCV, pp. 694–699 (1995)

    Google Scholar 

  2. Chan, T., Zhu, W.: Level set based shape prior segmentation. In: Proc. CVPR’05, pp. 20–26 (2005)

    Google Scholar 

  3. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  4. Chen, Y., Tagare, H., et al.: Using prior shapes in geometric active contours in a variational framework. IJCV 50(3), 315–328 (2002)

    Article  MATH  Google Scholar 

  5. Cootes, T., et al.: Active shape models-their training and application. CVIU 61(1), 38–59 (1995)

    Google Scholar 

  6. Cremers, D., Sochen, N., Schnörr, C.: Towards recognition-based variational segmentation using shape priors and dynamic labeling. In: Proceedings of International Conference on Scale Space Theories in Computer Vision (2003)

    Google Scholar 

  7. Esedoglu, S., March, R.: Segmentation with depth but without detecting junctions. J. Mathematical Imaging and Vision 18(1), 7–15 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kichenassamy, S., et al.: Gradient flows and geometric active contour models. In: ICCV, pp. 810–815 (1995)

    Google Scholar 

  9. Leventon, M., Grimson, W.L., Faugeras, O.: Statistical shape influence in geodesic active contours. In: CVPR, vol. 1, pp. 316–323 (2000)

    Google Scholar 

  10. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE Trans. on PAMI 17, 158–175 (1995)

    Google Scholar 

  11. Rousson, M., Paragios, N., Deriche, R.: Active shape models from a level set perspective. Technical Report 4984, INRIA (October 2003)

    Google Scholar 

  12. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. on Pure and App. Math. 42, 577–684 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nitzberg, M., Mumford, D.: The 2.1-d sketch. In: ICCV (1990)

    Google Scholar 

  14. Nitzberg, M., Shiota, T., Mumford, D. (eds.): Filtering, Segmentation and Depth. LNCS, vol. 662. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  15. Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: algorithms based on the Hamilton–Jacobi formulation. J. of Comp. Phy. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. IJCV 46(3), 223–247 (2002)

    Article  MATH  Google Scholar 

  17. Tsai, A., A.,, Yezzi, o.: Model-based curve evolution technique for image segmentation. In: Proc. CVPR’01, vol. 1, Dec. 2001, pp. 463–468 (2001), http://csdl.computer.org/comp/proceedings/cvpr/2001/1272/01/1272toc.htm

  18. Vese, L., Chan, T.: Multiphase level set framework for image segmentation using the mumford and shah model. IJCV 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Thiruvenkadam, S.R., Chan, T.F., Hong, BW. (2007). Segmentation Under Occlusions Using Selective Shape Prior. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics