Skip to main content

Mechano- and Chemo-Sensory Polycystins

  • Chapter
Sensing with Ion Channels

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 11))

  • 757 Accesses

Polycystins belong to the superfamily of transient receptor potential (TRP) channels and comprise five PKD1-like and three PKD2-like (TRPP) subunits. In this chapter, we review the general properties of polycystins and discuss their specific role in both mechanotransduction and chemoreception. The heteromer PKD1/PKD2 expressed at the membrane of the primary cilium of kidney epithelial cells is proposed to form a mechano-sensitive calcium channel that is opened by physiological fluid flow. Dysfunction or loss of PKD1 or PKD2 polycystin genes may be responsible for the inability of epithelial cells to sense mechanical cues, thus provoking autosomal dominant polycystic kidney disease (ADPKD), one of the most prevalent genetic kidney disorders. pkd1 and pkd2 knock-out mice recapitulate the human disease. Similarly, PKD2 may function as a mechanosensory calcium channel in the immotile monocilia of the developing node transducing leftward flow into an increase in calcium and specifying the left–right axis. pkd2, unlike pkd1 knock-out embryos are characterized by right lung isomerism (situs inversus). Mechanical stimuli also induce cleavage and nuclear translocation of the PKD1 C-terminal tail, which enters the nucleus and initiates signaling processes involving the AP-1, STAT6 and P100 pathways. This intraproteolytic mechanism is implicated in the transduction of a change in renal fluid flow to a transcriptional long-term response. The heteromer PKD1L3/PKD2L1 is the basis for acid sensing in specialised sensory cells including the taste bud cells responsible for sour taste. Moreover, PKD1L3/PKD2L1 may be implicated in the chemosensitivity of neurons surrounding the spinal cord canal, sensing protons in the cerebrospinal fluid. These recent results demonstrate that polycystins fulfill a major sensory role in a variety of cells including kidney epithelial cells, taste buds cells and spinal cord neurons. Such mechanisms are involved in short- and long-term physiological regulation. Alteration of these pathways culminates in severe human pathologies, including ADPKD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148.

    Article  PubMed  Google Scholar 

  • Barr MM, Sternberg PW (1999) A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401:386–389.

    PubMed  Google Scholar 

  • Basora N, Nomura H, Berger UV, Stayner C, Guo L, Shen X, Zhou J (2002) Tissue and cellular localization of a novel polycystic kidney disease-like gene product, polycystin-L. J Am Soc Nephrol 13:293–301.

    PubMed  Google Scholar 

  • Bichet D, Peters D, Patel A, Delmas P, Honoré E (2006) The cardiovascular polycystins: insights from autosomal dominant polycystic kidney disease and transgenic animal models. Trends Cardiovasc Res 16:292–298.

    Article  Google Scholar 

  • Boucher C, Sandford R (2004) Autosomal dominant polycystic kidney disease (ADPKD, MIM 173900, PKD1 and PKD2 genes, protein products known as polycystin-1 and polycystin-2). Eur J Hum Genet 12:347–354.

    Article  PubMed  Google Scholar 

  • Chauvet V, Tian X, Husson H, Grimm DH, Wang T, Hiesberger T, Igarashi P, Bennett AM, Ibraghimov-Beskrovnaya O, Somlo S, Caplan MJ (2004) Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. J Clin Invest 114:1433–1443.

    PubMed  Google Scholar 

  • Chen XZ, Vassilev PM, Basora N, Peng JB, Nomura H, Segal Y, Brown EM, Reeders ST, Hediger MA, Zhou J (1999) Polycystin-L is a calcium-regulated cation channel permeable to calcium ions. Nature 401:383–386.

    PubMed  Google Scholar 

  • Davenport JR, Yoder BK (2005) An incredible decade for the primary cilium: a look at a once-forgotten organelle. Am J Physiol Renal Physiol 289:F1159–F1169.

    Article  PubMed  Google Scholar 

  • Delmas P (2004) Polycystins: from mechanosensation to gene regulation. Cell 118:145–148.

    Article  PubMed  Google Scholar 

  • Delmas P (2005) Polycystins: polymodal receptor/ion-channel cellular sensors. Pfluegers Arch 451:264–276.

    Article  Google Scholar 

  • Delmas P, Nomura H, Li X, Lakkis M, Luo Y, Segal Y, Fernandez-Fernandez JM, Harris P, Frischauf AM, Brown DA, Zhou J (2002) Constitutive activation of G-proteins by polycystin-1 is antagonized by polycystin-2. J Biol Chem 277:11276–11283.

    Article  PubMed  Google Scholar 

  • Delmas P, Nauli SM, Li X, Coste B, Osorio N, Crest M, Brown DA, Zhou J (2004) Gating of the polycystin ion channel signaling complex in neurons and kidney cells. FASEB J 18:740–742.

    PubMed  Google Scholar 

  • Eley L, Yates LM, Goodship JA (2005) Cilia and disease. Curr Opin Genet Dev 15:308–314.

    Article  PubMed  Google Scholar 

  • Forman JR, Qamar S, Paci E, Sandford RN, Clarke J (2005) The remarkable mechanical strength of polycystin-1 supports a direct role in mechanotransduction. J Mol Biol 349:861–871.

    Article  PubMed  Google Scholar 

  • Geng L, Okuhara D, Yu Z, Tian X, Cai Y, Shibazaki S, Somlo S (2006) Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J Cell Sci 119:1383–1395.

    Article  PubMed  Google Scholar 

  • Giamarchi A, Padilla F, Coste B, Raoux M, Crest M, Honore E, Delmas P (2006) The versatile nature of the calcium-permeable cation channel TRPP2. EMBO Rep 7:787–793.

    Article  PubMed  Google Scholar 

  • Guo L, Chen M, Basora N, Zhou J (2000a) The human polycystic kidney disease 2-like (PKDL) gene: exon/intron structure and evidence for a novel splicing mechanism. Mamm Genome 11:46–50.

    Article  PubMed  Google Scholar 

  • Guo L, Schreiber TH, Weremowicz S, Morton CC, Lee C, Zhou J (2000b) Identification and characterization of a novel polycystin family member, polycystin-L2, in mouse and human: sequence, expression, alternative splicing, and chromosomal localization. Genomics 64:241–251.

    Article  PubMed  Google Scholar 

  • Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB Germino GG (2000) Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408:990–994.

    Article  PubMed  Google Scholar 

  • Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Trankner D, Ryba NJ, Zuker CS (2006) The cells and logic for mammalian sour taste detection. Nature 442:934–938.

    Article  PubMed  Google Scholar 

  • Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K, San Millan JL, Gamble V, Harris PC (1995) The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet 10:151–160.

    Article  PubMed  Google Scholar 

  • Ibraghimov-Beskrovnaya O, Bukanov NO, Donohue LC, Dackowski WR, Klinger KW, Landes GM (2000) Strong homophilic interactions of the Ig-like domains of polycystin-1, the protein product of an autosomal dominant polycystic kidney disease gene, PKD1. Hum Mol Genet 9:1641–1649.

    Article  PubMed  Google Scholar 

  • Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H (2006) Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci USA 103:12569–12574.

    Article  PubMed  Google Scholar 

  • Ji G, Barsotti RJ, Feldman ME, Kotlikoff MI (2002) Stretch-induced calcium release in smooth muscle. J Gen Physiol 119:533–544.

    Article  PubMed  Google Scholar 

  • Karcher C, Fischer A, Schweickert A, Bitzer E, Horie S, Witzgall R, Blum M (2005) Lack of a laterality phenotype in Pkd1 knock-out embryos correlates with absence of polycystin-1 in nodal cilia. Differentiation 73:425–432.

    Article  PubMed  Google Scholar 

  • Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S (2002) Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 4:191–197.

    Article  PubMed  Google Scholar 

  • Lakkis M, Zhou J (2003) Molecular complexes formed with polycystins. Nephron Exp Nephrol 93:e3–e8.

    Article  PubMed  Google Scholar 

  • Li A, Tian X, Sung SW, Somlo S (2003) Identification of two novel polycystic kidney disease-1-like genes in human and mouse genomes. Genomics 81:596–608.

    Article  PubMed  Google Scholar 

  • Li Q, Liu Y, Zhao W, Chen XZ (2002) The calcium-binding EF-hand in polycystin-L is not a domain for channel activation and ensuing inactivation. FEBS Lett 516:270–278.

    PubMed  Google Scholar 

  • Li Q, Montalbetti N, Wu Y, Ramos AJ, Raychowdhury MK, Chen XZ, Cantiello HF (2006) Polycystin-2 cation channel function is under the control of microtubular structures in primary cilia of renal epithelial cells. J Biol Chem 281:37566–37575.

    Article  PubMed  Google Scholar 

  • Li Y, Wright JM, Qian F, Germino GG, Guggino WB (2005) Polycystin 2 interacts with type I inositol 1, 4, 5-trisphosphate receptor to modulate intracellular Ca2+ signaling. J Biol Chem 280:41298–41306.

    Article  PubMed  Google Scholar 

  • LopezJimenez ND, Cavenagh MM, Sainz E, Cruz-Ithier MA, Battey JF, Sullivan SL (2006) Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J Neurochem 98:68–77.

    Article  PubMed  Google Scholar 

  • Low SH, Vasanth S, Larson CH, Mukherjee S, Sharma N, Kinter MT, Kane ME, Obara T, Weimbs T (2006) Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev Cell 10:57–69.

    Article  PubMed  Google Scholar 

  • Malhas AN, Abuknesha RA, Price RG (2002) Interaction of the leucine-rich repeats of polycystin-1 with extracellular matrix proteins: possible role in cell proliferation. J Am Soc Nephrol 13:19–26.

    PubMed  Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185.

    Article  PubMed  Google Scholar 

  • McGrath J, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114:61–73.

    Article  PubMed  Google Scholar 

  • Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342.

    Article  PubMed  Google Scholar 

  • Mohanty MJ, Li X (2002) Stretch-induced Ca(2+) release via an IP(3)-insensitive Ca(2+) channel. Am J Physiol Cell Physiol 283:C456–462.

    PubMed  Google Scholar 

  • Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu N, Zhu MX (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9:229–231.

    Article  PubMed  Google Scholar 

  • Moy GW, Mendoza LM, Schulz JR, Swanson WJ, Glabe CG, Vacquier VD (1996) The sea urchin sperm receptor for egg jelly is a modular protein with extensive homology to the human polycystic kidney disease protein, PKD1. J Cell Biol 133:809–817.

    Article  PubMed  Google Scholar 

  • Murakami M, Ohba T, Xu F, Shida S, Satoh E, Ono K, Miyoshi I, Watanabe H, Ito H, Iijima T (2005) Genomic organization and functional analysis of murine PKD2L1. J Biol Chem 280:5626–5635.

    Article  PubMed  Google Scholar 

  • Nauli SM, Zhou J (2004) Polycystins and mechanosensation in renal and nodal cilia. Bioessays 26:844–856.

    Article  PubMed  Google Scholar 

  • Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137.

    Article  PubMed  Google Scholar 

  • Nomura H, Turco AE, Pei Y, Kalaydjieva L, Schiavello T, Weremowicz S, Ji W, Morton CC, Meisler M, Reeders ST, Zhou J (1998) Identification of PKDL, a novel polycystic kidney disease 2-like gene whose murine homologue is deleted in mice with kidney and retinal defects. J Biol Chem 273:25967–25973.

    Article  PubMed  Google Scholar 

  • Parnell SC, Magenheimer BS, Maser RL, Rankin CA, Smine A, Okamoto T, Calvet JP (1998) The polycystic kidney disease-1 protein, polycystin-1, binds and activates heterotrimeric G-proteins in vitro. Biochem Biophys Res Commun 251:625–631.

    Article  PubMed  Google Scholar 

  • Pennekamp P, Karcher C, Fischer A, Schweickert A, Skryabin B, Horst J, Blum M, Dworniczak B (2002) The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 12:938–943.

    Article  PubMed  Google Scholar 

  • Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79.

    Article  PubMed  Google Scholar 

  • Praetorius HA, Spring KR (2003a) Removal of the MDCK cell primary cilium abolishes flow sensing. J Membr Biol 191:69–76.

    Article  PubMed  Google Scholar 

  • Praetorius HA, Spring KR (2003b) The renal cell primary cilium functions as a flow sensor. Curr Opin Nephrol Hypertens 12:517–520.

    Article  PubMed  Google Scholar 

  • Praetorius HA, Spring KR (2005) A physiological view of the primary cilium. Annu Rev Physiol 67:515–529.

    Article  PubMed  Google Scholar 

  • Qian F, Germino FJ, Cai Y, Zhang X, Somlo S, Germino GG (1997) PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet 16:179–183.

    Article  PubMed  Google Scholar 

  • Qian F, Wei W, Germino G, Oberhauser A (2005) The nanomechanics of polycystin-1 extracellular region. J Biol Chem 280:40723–40730.

    Article  PubMed  Google Scholar 

  • Raychowdhury MK, McLaughlin M, Ramos AJ, Montalbetti N, Bouley R, Ausiello DA, Cantiello HF (2005) Characterization of single channel currents from primary cilia of renal epithelial cells. J Biol Chem 280:34718–34722.

    Article  PubMed  Google Scholar 

  • Salisbury JL (2004) Primary cilia: putting sensors together. Curr Biol 14:R765–767.

    Article  PubMed  Google Scholar 

  • Singla V, Reiter JF (2006) The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313:629–633.

    Article  PubMed  Google Scholar 

  • Sutters M, Germino GG (2003) Autosomal dominant polycystic kidney disease: molecular genetics and pathophysiology. J Lab Clin Med 141:91–101.

    Article  PubMed  Google Scholar 

  • Tsiokas L, Kim E, Arnould T, Sukhatme VP, Walz G (1997) Homo- and heterodimeric interactions between the gene products of PKD1 PKD2. Proc Natl Acad Sci USA 94:6965–6970.

    Article  PubMed  Google Scholar 

  • Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP (1999) Specific association of the gene product of PKD2 with the TRPC1 channel. Proc Natl Acad Sci USA 96:3934–3939.

    Article  PubMed  Google Scholar 

  • Veldhuisen B, Spruit L, Dauwerse HG, Breuning MH, Peters DJ (1999) Genes homologous to the autosomal dominant polycystic kidney disease genes (PKD1 and PKD2). Eur J Hum Genet 7:860–872.

    Article  PubMed  Google Scholar 

  • Weston BS, Malhas AN, Price RG (2003) Structure–function relationships of the extracellular domain of the autosomal dominant polycystic kidney disease-associated protein, polycystin-1. FEBS Lett 538:8–13.

    Article  PubMed  Google Scholar 

  • Wu G, Hayashi T, Park JH, Dixit M, Reynolds DM, Li L, Maeda Y, Cai Y, Coca-Prados M, Somlo S (1998) Identification of PKD2L, a human PKD2-related gene: tissue-specific expression and mapping to chromosome 10q25. Genomics 54:564–568.

    Article  PubMed  Google Scholar 

  • Yoder BK, Tousson A, Millican L, Wu JH, Bugg CE Jr, Schafer JA, Balkovetz DF (2002) Polaris, a protein disrupted in orpk mutant mice, is required for assembly of renal cilium. Am J Physiol Renal Physiol 282:F541–552.

    PubMed  Google Scholar 

  • Yuasa T, Venugopal B, Weremowicz S, Morton CC, Guo L, Zhou J (2002) The sequence, expression, and chromosomal localization of a novel polycystic kidney disease 1-like gene, PKD1L1, in human. Genomics 79:376–386.

    Article  PubMed  Google Scholar 

  • Yuasa T, Takakura A, Denker BM, Venugopal B, Zhou J (2004) Polycystin-1L2 is a novel G-protein-binding protein. Genomics 84:126–138.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Patel, A., Delmas, P., Honoré, E. (2008). Mechano- and Chemo-Sensory Polycystins. In: Martinac, B. (eds) Sensing with Ion Channels. Springer Series in Biophysics, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72739-2_8

Download citation

Publish with us

Policies and ethics