Skip to main content

TRPC Family of Ion Channels and Mechanotransduction

  • Chapter
Sensing with Ion Channels

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 11))

Here we review recent evidence that indicates members of the canonical transient receptor potential (TRPC) channel family form mechanosensitive (MS) channels. The MS functions of TRPCs may be mechanistically related to their better known functions as store-operated (SOCs) and receptor-operated channels (ROCs). In particular, mechanical forces may be conveyed to TRPC channels through “conformational coupling” and/or “Ca2+ influx factor” mechanisms that are proposed to transmit information regarding the status of internal Ca2+ stores to SOCs located in the plasma membrane. Furthermore, all TRPCs are regulated by receptors coupled to phospholipases (e.g., PLC and PLA2) that may themselves display mechanosensitivity and modulate channel activity via their generation of lipidic second messengers (e.g., diacylglycerol, lysophospholipids and arachidonic acid). Accordingly, there may be several nonexclusive mechanisms by which mechanical forces may regulate TRPC channels, including direct sensitivity to bilayer deformations (e.g., involving changes in lipid packing, bilayer thickness and/or lateral pressure profile), physical coupling to internal membranes and/or cytoskeletal proteins, and sensitivity to lipidic second messengers generated by MS enzymes. Various strategies that can be used to separate out different MS gating mechanisms and their possible role in each of the TRPCs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman MJ, Wickman KD, Clapham DE (1994) Hypotonicity activates a native chloride current in Xenopus oocyte. J Gen Physiol 103:153–179.

    Article  PubMed  Google Scholar 

  • Alexander D, Alagarsamy S, Douglas JG (2004) Cyclic stretch-induced cPLA2 mediates ERK 1/2 signaling in rabbit proximal tubule cells. Kidney Int 65:551–563.

    Article  PubMed  Google Scholar 

  • Allen DG, Whitehead NP, Yeung EW (2005) Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. J Physiol 567 3:723–735.

    Article  PubMed  Google Scholar 

  • Ahmmed GU, Mehta D, Vogel S, Holinstat M, Paria BC, Tiruppathi C, Malik AB (2004) Protein kinase C, phosphorylates the TRPC1 channels and regulates store-operated Ca2+ entry in endothelial cells. J Biol Chem 79:20941–20949.

    Article  Google Scholar 

  • Ambudkar IS (2006) Ca2+ signaling microdomains: platforms for the assembly and regulation of the assembly and regulation of TRPC channels. Trends Pharmacol Sci 27:25–32.

    Article  PubMed  Google Scholar 

  • Andersen L, Seilhamer JA (1997) Comparison of selected mRNA and protein abundance in human liver. Electrophoresis 18:533–537.

    Article  Google Scholar 

  • Antoniotti S, Pla F, Barrel S, Scalabrino L, Vovisolo, D (2006) Interaction between TRPC subunits in endothelial cells. J Recep Signal Transduc 26:225–240.

    Article  Google Scholar 

  • Bakker EN, Kerkhof CJM, Sipkema P (1999) Signal transduction in spontaneous myogenic tone insolated arterioles from rat skeletal muscle. Cardiovasc Res 41:229–236.

    Article  PubMed  Google Scholar 

  • Bakowski D, Glitsch MD, Parekh AB (2001) An examination of the secretion-like coupling model for the activation of the Ca2+ release-activated Ca2+ current Icrac in RBL-1 cells. J Physiol 532 1:55–71.

    Article  Google Scholar 

  • Barsanti C, Pellegrini M, Pellegrino M (2006a) Regulation of the mechanosensitive cation channels by ATP and cAMP in leech neurons. Biochim Biophys Acta 1758:666–672.

    Article  PubMed  Google Scholar 

  • Barsanti C, Pellegrini M, Ricci D, Pellegrino M (2006b) Effects of intracellular pH and Ca2+ on the activity of stretch-sensitive cation channels in leech neurons Pfluegers Arch 452:435–443.

    Article  Google Scholar 

  • Basora N, Boulay G, Biloddeau L, Rousseau E, Marcel DP (2003) 20-Hydroxyeicosatetraenocic acid (20-HETE) activates mouse TRPC6 channels expressed in HEK293 cells. J Biol Chem 278:31709–31716.

    Article  PubMed  Google Scholar 

  • Basavappa S, Pedersen SF, Jorgensen NK, Ellory JC, Hoffmann EK (1988) Swelling-induced arachidonic acid release via a 85 kDa cPLA2 in human neuroblastoma cells. J Neurophysiol 79:1441–1449.

    Google Scholar 

  • Bear CE (1990) A nonselective cation channel in rat liver cells is activated by membrane stretch. Am J Physiol 258:C421–C428.

    PubMed  Google Scholar 

  • Beck B, Zholos A, Sydorenko V, Roudbaraki M, Lehenkyi V, Bordat P, Prevarskaya N, Skryma M (2006) TRPC7 is a receptor-operated DAG-activated channel in human keratinocytes. J Invest Dermatol 126:1982–1993.

    Article  PubMed  Google Scholar 

  • Beech DJ (2005) TRPC1: store-operated channel and more. Pfuegers Arch 451:53–60.

    Article  Google Scholar 

  • Beech DJ (2006) Bipolar phospholipid sensing by TRPC5 calcium channel. Biochem Soc Trans 35:101–104.

    ADS  Google Scholar 

  • Beech DJ, Xu SZ, Flemming MR (2003) TRPC1 store operated cationic channel subunit. Cell Calcium 33:433–440.

    Article  PubMed  Google Scholar 

  • Besch SR, Suchyna T, Sachs F (2002) High speed pressure clamp. Pfluegers Arch 445:161–166.

    Article  Google Scholar 

  • Bielfeld-Ackermann A, Range C, Korbmacher C (1998) Maitotoxin (MTX) activates a nonselective cation channel in Xenopus laevis oocytes. Pfluegers Arch 436:329–337.

    Google Scholar 

  • Bobanovic´ LK, Laine M, Petersen CCH, Bennett DL, Berridge MJ, Lipp P, Ripley SJ, Bootman MD (1999) Molecular cloning and immunolocalization of a novel vertebrate trp homologue from Xenopus. Biochemistry 340:593–599.

    Article  Google Scholar 

  • Boittin FX, Pettermann O, Hirn C, Mittaud P, Dorchies OM, Roulet E, Ruegg UT (2006) Ca2+-independent phospholipase A2 enhances store-operated Ca2+ entry in dystrophic skeletal muscle fibres. J Cell Sci 119:3733–3742.

    Article  PubMed  Google Scholar 

  • Bolotina VM, Csutora P (2005) CIF and other mysteries of the store-operated Ca2+-entry pathway. Trends Neurosci 30:378–387.

    Google Scholar 

  • Boulay G, Zhu X, Peyton M, Jiang M, Hurst R, Stefani E, Birnbaumer L (1997) Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem 272:29672–29680.

    Article  PubMed  Google Scholar 

  • Brazier SW, Singh BB, Liu X, Swaim W, Ambudkar IS (2003) Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem 29:27208–27215.

    Article  Google Scholar 

  • Brereton HM, Harland ML, Auld AM, Barritt GJ (2000) Evidence that the TRP-1 protein is unlikely to account for store-operated Ca2+ inflow in Xenopus laevis oocytes. Mol Cell Biochem 214:63–74.

    Article  PubMed  Google Scholar 

  • Brereton HM, Chen J, Rychkov G, Harland ML, Barritt GJ (2001) Maitotoxin activates an endogenous non-selective cation channel and is an effective initiator of the activation of the heterologously expressed hTRPC-1 (transient receptor potential) non-selective cation channel in H4-IIE liver cells. Biochim Biophys Acta 1540:107–126.

    Article  PubMed  Google Scholar 

  • Brophy CM, Mills I, Rosales O, Isales C, Sumpio BE (1993) Phospholipase C: a putative mechanotransducer for endothelial cell response to acute hemodynamic changes, Biochem Biophys Res Commun 190:576–581.

    Article  PubMed  Google Scholar 

  • Bugaj V, Alexeenko V, Zubov A, Glushankova L, Nikalaev A, Wang Z, Kaznaceyeva I, Mozhayeva GN (2005) Functional properties of endogenous receptor and store operated calcium influx channels in HEK293 cells. J Biol Chem 280:16790–16797.

    Article  PubMed  Google Scholar 

  • Calabrese B, Manzi S, Pellegrini M, Pelligrino M (1999) Stretch activated cation channels of leech neurons: characterization and role in neurite outgrowth. Eur J Neurosci 11:2275–2284.

    Article  PubMed  Google Scholar 

  • Callamaras N, Sun XP, Ivorra I, Parker I (1998) Hemispheric asymmetry of macroscopic and elementary calcium signals mediated by InsP3 in Xenopus oocytes. J Physiol 511:395–405.

    Article  PubMed  Google Scholar 

  • Cantiello HF, Montalbetti, N, Li Q, Chen XZ (2007) The cytoskeleton connection as a potential mechanosensory mechanism: lessons from polycystin 2 (TRPP2). Curr Top Membr 59:233–296.

    Article  Google Scholar 

  • Casado M, Ascher P (1998) Opposite modulation of NMDA receptors by lysophospholipids and arachidonic acid: common features with mechanosensitivity. J Physiol 513:317–330.

    Article  PubMed  Google Scholar 

  • Cemerikic D, Sackin H (1993) Substrate activation of mechanosensitive, whole cell currents in renal proximal tubule. Am J Physiol 264:F697–F714.

    PubMed  Google Scholar 

  • Chemin J, Patel AJ, Duprat F, Lauritzen I, Lazdunski M, Honoré E (2005) A phospholipid sensor controls mechanogating of the K+ channel TREK-1. EMBO J 24:44–53.

    Article  PubMed  Google Scholar 

  • Chen J, Barritt GJ (2003) Evidence that TRPC1 (transient receptor potential canonical 1) forms a Ca2+-permeable channels linked to the regulation of cell volume in liver cells obtaining using small interfering RNA targeted against TRPC1. Biochem J 373:327–336.

    Article  PubMed  Google Scholar 

  • Cherednichenko G, Hurne AM, Fessenden JD, Lee EH, Allen PD, Beam KG, Pessah IN (2004) Conformational activation of Ca2+ entry by depolarization of skeletal myotubes. Proc Natl Acad Sci USA 101:15793–15798.

    Article  PubMed  ADS  Google Scholar 

  • Christensen O (1987) Mediation of cell volume regulation by Ca2+ influx through stretch activated cation channels. Nature 330:66–68.

    Article  PubMed  ADS  Google Scholar 

  • Chu X, Cheung JY, Barber DL, Birnbaumer L, Rothblum LI, Conrad K, Abrason V, Chan Y, Stahl R, Carey DJ, Miller BA (2002) Erythropoietin modulates calcium influx through TRPC2. J Biol Chem 277:34375–34382.

    Article  PubMed  Google Scholar 

  • Chu X, Tong Q, Cheung JY, Wozney J, Conrad K, Maznack V, Zhang W, Stahl R, Barber DL, Miller BA (2004) Interaction of TRPC2 and TRPC6 in erythropoietin modulation of calcium influx. J Biol Chem 279:10514–10522.

    Article  PubMed  Google Scholar 

  • Cioffi DL, Wu S, Alexeyev M, Goodman SR, Zhu MX, Stevens T (2005) Activation of the endothelial store-operated ISOC Ca2+ channel requires interaction of protein 4.1 with TRPC4. Circ Res 97:1164–1172.

    Article  PubMed  Google Scholar 

  • Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524.

    Article  PubMed  ADS  Google Scholar 

  • Cohen DM (2005a) SRC family kinases in cell volume regulation. Am J Physiol 288:C483–C493.

    Article  ADS  Google Scholar 

  • Cohen DM (2005b) TRPV4 and the mammalian kidney. Pfluegers Arch 451:168–175.

    Article  Google Scholar 

  • Cosens DJ, Manning A (1969) Abnormal electroretinogram from a Drosophila mutant. Nature 224:285–287.

    Article  PubMed  ADS  Google Scholar 

  • Delmas P (2004) Assembly and gating of TRPC channels in signaling microdomains. Novartis Found Symp 258:75–97.

    Article  PubMed  Google Scholar 

  • Delmas P, Wanaverbecq N, Abogadie FC, Mistry M, Brown DA (2002) Signaling microdomains define the specificity of receptor-mediated INsP3 pathways in neurons. Neuron 14:209–220.

    Article  Google Scholar 

  • Diakov A, Koch JP, Ducoudret O, Mueler-Berger S, Frömter E (2001) The disulfoic stilbene DIDS and the marine toxin maitotoxin activated the same two types of endogenous cation conductance in the cell membrane of Xenopus laevis oocytes. Pfluegers Arch 442:700–708.

    Article  Google Scholar 

  • Dietrich AM, Schnitzler MM, Emmel J, Kallwa H, Hofmann T, Gundermann T (2003) N-linked protein glycosylation is a major determinant for basal TRPC3 and TRPC6 channel activity. J Biol Chem 278:47842–47852.

    Article  PubMed  Google Scholar 

  • Dietrich A, Schnitzker MM, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L (2005) Increased vascular smooth muscle contractility in TRPC6−/− mice. Mol Cell Biol 25:6980–6989.

    Article  PubMed  Google Scholar 

  • Drummond HA, Price MP, Welsh MJ, Abboud FM (1998) A molecular component of the arterial baroreceptor mechanotransducer. Neuron 21:1435–1441.

    Article  PubMed  Google Scholar 

  • Ducret T, Vandebrouck C, Cao ML, Lebacq J, Gailly P (2006) Functional role of store-operated and stretch-activated channels in murine adult skeletal muscle fibers. J Physiol 575 3:913–924.

    Article  Google Scholar 

  • Durvasula RV, Shankland SJ (2006) Podocyte injury and targeting therapy: an update. Curr Opin Nephrol Hypertens 15:1–7.

    Article  PubMed  Google Scholar 

  • Escobar LI, Salvador C, Martinez M, Vaca L (1998) Maitotoxin, a cationic channel activator. Neurobiol 6:59–74.

    Google Scholar 

  • Estacion M, Li S, Sinkins WG, Gosling M, Bahra P, Poll C, Westwick J, Schilling WP (2004) Activation of human TRPC6 channels by receptor stimulation. J Biol Chem 279:22047–22056.

    Article  PubMed  Google Scholar 

  • Fensome-Green A, Stannard N, Li M, Bolsover S, Cockcroft S (2007) Bromoenol lactone, an inhibitor of group VIA calcium-independent phospholipase A2 inhibits antigen-stimulated mast cell exocytosis without blocking Ca2+ influx. Cell Calcium 41:145–153.

    Article  PubMed  Google Scholar 

  • Flemming PK, Dedman AM, Xu SZ, Li J, Zeng F, Naylor J, Benham CD, Bateson AN, Muraki K, Beech DJ (2006) Sensing of lysophospholipids by TRPC5 calcium channel. J Biol Chem 281:4977–4982.

    Article  PubMed  Google Scholar 

  • Flemming R, Xu SZ, Beech DJ (2003) Pharmacological profile of store-operated channels in cerebral arteriolar smooth muscle cells. Br J Pharm 139:955–965.

    Article  Google Scholar 

  • Fong P, Turner PR, Denetclaw WF, Steinhardt RA (1990) Increased activity of calcium leak channels in myotubes of Duchenne human and mdx mouse origin. Science 250:673–676.

    Article  PubMed  ADS  Google Scholar 

  • Franco A, Lansman JB (1990) Calcium entry through stretch-inactivated channels in mdx myotubes. Nature 344:670–673.

    Article  PubMed  ADS  Google Scholar 

  • Franco-Obregon A, Lansman JB (2002) Changes in mechanosensitive channel gating following mechanical stimulation in skeletal muscle myotubes from the mdx mouse. J Physiol 539 2:391–407.

    Article  Google Scholar 

  • Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Phillip S, Freise D, Droogmans G, Hofmann F, Flocerzi V, Nilius B (2003) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRPC4−/− mice. Nat Cell Biol 3:121–127.

    Article  Google Scholar 

  • Freichel M, Vennekens R, Olausson J, Hoffmann M, Müller C, Stolz S, Scheunemann J, Weissgerber P, Flockerzi V (2004) Functional role of TRPC proteins in vivo: lessons from TRPC-deficient mouse models. Biochem Biophys Res Commun 322:1352–1358.

    Article  PubMed  Google Scholar 

  • Gailly P, Colson-Van Schoor M (2001) Involvement of TRP2 protein in store-operated influx of calcium in fibroblasts. Cell Calcium 30:157–165.

    Article  PubMed  Google Scholar 

  • Giamarchi A, Padilla F, Coste B, Raoux M, Crest M, Honoré E, Delmas P (2006) The versatile nature of the calcium-permeable cation channel TRPP2. EMBO Rep 7:787–793.

    Article  PubMed  Google Scholar 

  • Glazebrook PA, Schilling WP, Kunze DL (2005) TRPC channels as signal transducers. Pfluegers Arch 451:125–130.

    Article  Google Scholar 

  • Goel M, Sinkins WG, Zuo CD, Estacion M, Schilling WP (2006) Identification and localization of TRPC channels in the rat kidney. Am J Physiol 290:F1241–F1252.

    Google Scholar 

  • Golovina VA, Platoshyn O, Bailey CL, Wang J, Limsuwan A, Sweeney M, Rubin LJ, Yuan JX (2001) Upregulated TRP and enhanced capacitative Ca2+ entry in human pulmonary artery myocytes during proliferation. Am J Physiol 280:H746–H755.

    Google Scholar 

  • Gottlieb PA, Suchyna TM, Ostrow LW, Sachs F (2004) Mechanosensitive ion channels as drug targets. Curr Drug Targets 3:287–295.

    Google Scholar 

  • Greka A, Navarro B, Duggan A, Clapham DE (2003) TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6:837–845.

    Article  PubMed  Google Scholar 

  • Groschner K, Rosker C (2005) TRPC3: a versatile transducer molecule that serves integration and diversification of cellular signals. Naunyn Schmiedebergs Arch Pharmacol 371:251–256.

    Article  PubMed  Google Scholar 

  • Gu CX, Juranka PF, Morris CE (2001) Stretch-activation and stretch-inactivation of Shaker-IR, a voltage-gated K+ channel. Biophys J 80:2678–2693.

    Article  PubMed  Google Scholar 

  • Guharay F, Sachs F (1984) Stretch-activated single ion channel currents in tissue cultured embryonic chick skeletal muscle. J Physiol 352:685–701.

    PubMed  Google Scholar 

  • Hamill OP (1983) Potassium and chloride channels in red blood cells. In: Sakmann B, Neher E (eds) Single channel recording. Plenum, New York, pp 451–471.

    Google Scholar 

  • Hamill OP (2006) Twenty odd years of stretch-sensitive channels. Pfluegers Arch Eur J Phys 453.3:333–351.

    Article  Google Scholar 

  • Hamill OP, Maroto R (2007) TRPCs as MS channels. Curr Top Membr 59:191–231.

    Article  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740.

    PubMed  Google Scholar 

  • Hamill OP, McBride DW Jr (1992) Rapid adaptation of the mechanosensitive channel in Xenopus oocytes. Proc Natl Acad Sci USA 89:7462–7466.

    Article  PubMed  ADS  Google Scholar 

  • Hamill OP, McBride DW Jr (1996) The pharmacology of mechanogated membrane ion channels. Pharmacol Rev 48:231–252.

    PubMed  Google Scholar 

  • Hamill OP, McBride DW Jr (1997) Induced membrane hypo-/hyper-mechanosensitivity: a limitation of patch clamp recording. Annu Rev Physiol 59:621–631.

    Article  PubMed  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth F (1981) Improved patch clamp techniques for high current resolution from cells and cell-free membrane patches. Pfluegers Arch 391:85–100.

    Article  Google Scholar 

  • Hill AJ, Hinton JM, Cheng H, Gao Z, Bates DO, Hancox JC, Langton PD, James AF (2006). A TRPC-like non-selective cation current activated by A-adrenoceptors in rat mesenteric artery smooth muscle cells. Cell Calcium 40:29–40.

    Article  PubMed  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland, MA.

    Google Scholar 

  • Hisatsune C, Kuroda Y, Nakamura K, Inoue T, Nakamura T, Michikawa T, Mizuntani A, Mikoshiba K (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279:18887–18894.

    Article  PubMed  Google Scholar 

  • Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263.

    Article  PubMed  ADS  Google Scholar 

  • Hofmann T, Schaeffer M, Schultz G, Gudermann T (2000) Cloning, expression and subcellular localization of two novel splice variants of mouse transient receptor potential 2. Biochem J 351:115–122.

    Article  PubMed  Google Scholar 

  • Hofmann T, Schaeffer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA 99:7461–7466.

    Article  PubMed  ADS  Google Scholar 

  • Honoré E, Maingret F, Lazdunski M, Patel AJ (2002) An intracellular proton sensor commands lipid and mechano-gating of the K+ channel TRE-1. EMBO J 21:2968–2976.

    Article  PubMed  Google Scholar 

  • Honoré E, Patel AJ, Chemin J, Suchyna T, Sachs F (2006) Desensitization of mechano-gated K2p channels. Proc Natl Acad Sci USA 103:6859–6864.

    Article  PubMed  ADS  Google Scholar 

  • Hopf FW, Reddy P, Hong J, Steinhardt RA (1996) A capacitive calcium current in cultured skeletal muscle cells is medicated by the Ca2+-specific leak channel and inhibited by dihyropyridine compounds. J Biol Chem 271:22358–22367.

    Article  PubMed  Google Scholar 

  • Howard J, Bechstedt S (2004) Hypothesis: a helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. Curr Biol 14:224–226.

    Article  Google Scholar 

  • Howard J, Roberts WM, Hudspeth AJ (1988) Mechanoelectrical transduction by hair cells. Annu Rev Biophys Chem 17:99–124.

    Article  Google Scholar 

  • Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxl-terminus activates native SOC, ICRAC and TRPC1 channels. Nat Cell Biol 8:1003–1010.

    Article  PubMed  Google Scholar 

  • Huang M, Gu G, Ferguson E, Chalfie M (1995) A stomatin-like protein necessary for mechanosensation in C. elegans. Nature 378:292–295.

    Article  PubMed  ADS  Google Scholar 

  • Huber TB, Scherner B, Müller RU, Höhne M, Bartram M, Calixto A, Hagmann H, Reinhardt C, Koos F, Kunzelmann K, Shirokova E, Krautwurst D, Harteneck C, Simons M, Pavenstadt H, Kerjaschki D, Thiele C, Walz G, Chalfie M, Benzing T (2006) Podocin and MEC-2 bind cholesterol to regulate the activity of associated proteins. Proc Natl Acad Sci USA 103:17079–17086.

    Article  PubMed  ADS  Google Scholar 

  • Hui H, McHugh D, Hannan M, Zeng F, Xu SZ, Khan SUH, Levenson R, Beech DJ, Weiss JL (2006) Calcium-sensing mechanism in TRPC5 channels contributing to retardation of neurite outgrowth. J Physiol 572 1:165–172.

    Google Scholar 

  • Hurst RS, Zhu X, Boulay G, Birnbaumer L, Stefani E (1998) Ionic currents underlying HTRP3 mediated agonist-dependent Ca2+ influx in stably transfected HEK293 cells. FEBS Lett 422:333–338.

    Article  PubMed  Google Scholar 

  • Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, Mori Y (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular I1-adrenceptor-activated Ca2+-permeable cation channel. Circ Res 88:325–332.

    PubMed  Google Scholar 

  • Inoue R, Jensen LJ, Shi J, Morita H, Nishida M, Honda A, Ito Y (2006) Transient receptor potential channels in cardiovascular function and disease. Circ Res 99:119–131.

    Article  PubMed  Google Scholar 

  • Iwata Y, Katanosaka Y, Arai Y, Komanura K, Miyatake K, Shigekawa M (2003) A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel. J Cell Biol 161:957–967.

    Article  PubMed  Google Scholar 

  • Jaconi M, Pyle J, Bortolon R, Ou J, Clapham D (1999) Calcium release and influx colocalize to the endoplasmic reticulum. Curr Biol 7:599–602.

    Article  Google Scholar 

  • Jacques-Fricke BT, Seow Y, Gottlieb PC, Sachs F, Gomez TM (2006) Ca2+ Influx through mechanosensitive channels inhibits neurite outgrowth in opposition to other influx pathways and release of intracellular stores. J Neurosci 26:5656–5664.

    Article  PubMed  Google Scholar 

  • Janssen LJ, Kwan CY (2007) ROCs and SOCs: what’s in a name? Cell Calcium 41:245–247.

    Article  PubMed  Google Scholar 

  • Jung S, Strotmann R, Schultz G, Plant TD (2002) TRPC6 is a candidate channel involved in receptor-stimulated cation currents in A7r5 smooth muscle cells. Am J Physiol 282:C347–C359.

    Google Scholar 

  • Jung S, Mühle A, Shaefer M, Strotmann R, Schultz G, Plant TD (2003) Lanthanides potentiate TRPC5 currents by an action at the extracellular sites close to the pore mouth. J Biol Chem 278:3562–3571.

    Article  PubMed  Google Scholar 

  • Jungnickel MK, Marrero H, Birnbaumer L, Lemos JR, Florman HM, (2001) Trp2 regulates entry of Ca2+ into mouse sperm triggered by ZP3. Nature Cell Biol 3:499–502.

    Article  PubMed  Google Scholar 

  • Kamouchi M, Philipp S, Flockerzi V, Wissenbach U, Mamin A, Raemaekers L, Eggermont J, Droogmans G, Nilius B (1999) Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. J Physiol 518 2:345–359.

    Article  Google Scholar 

  • Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, Kojima I (1999) Translocation of a calcium-permeable cation channel induced in insulin-like growth factor-1. Nature Cell Biol 1:165–170.

    Article  PubMed  Google Scholar 

  • Kawasaki BT, Liao Y, Birnbaumer L (2006) Role of Src in C3 transient receptor potential channel function and evidence for a heterogeneous makeup of receptor- and store-operated Ca2+ entry channels. Proc Natl Acad Sci USA 103:335–340.

    Article  PubMed  ADS  Google Scholar 

  • Kim D (1992) A mechanosensitive K+ channel in heart-cells: activation by arachidonic acid. J Gen Physiol 100:1021–1040.

    Article  PubMed  Google Scholar 

  • Kiselyov K, Xu X, Mozayeva G, Kuo T, Pessah I, Mignery G, Zhu X, Birnbaumer L, Muallen S (1998) Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396:478–482.

    Article  PubMed  ADS  Google Scholar 

  • Kloda A, Martinac B (2001a) Structural and functional differences between two homologous mechanosensitive channels of Methanocccus jannaschii. EMBO J 20:1888–1896.

    Article  PubMed  Google Scholar 

  • Kloda A, Martinac B (2001b) Mechanosensitive channel of Thermoplasma, the cell wall-less Archae. Cell Biochem Biophys 34:321–347.

    Article  PubMed  Google Scholar 

  • Kriz W (2005) TRPC6–a new podocyte gene involved in focal segmental glomerulosclerosis. Trends Mol Med 11:527–530.

    Article  PubMed  Google Scholar 

  • Kumar B, Dreja K, Shah SS, Cheong A, Xu SZ, Sukumar P, Naylor J, Forte A, Cipollaro M, McHugh D, Kingston PA, Heagerty AM, Munsch C, Bergdahl M, Hultgardh-Nilsson A, Gomez MF, Porter KE, Hellstrand P, Beech DJ (2006) Upregulated TRPC1 channel in vascular injury in vivo and its role in human neoitimal hyperplasia. Circ Res 98:557–563.

    Article  PubMed  Google Scholar 

  • Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654.

    Article  PubMed  ADS  Google Scholar 

  • Kunichika N, Yu Y, Remillard CV, Platoshyn O, Zhang S, Yuan JXL (2004) Overexpression of TRPC1 enhances pulmonary vasoconstriction induced by capacitative Ca2+ entry. Am J Physiol 287:L962–L969.

    Google Scholar 

  • Kwan HY, Leung PC, Huang Y, Yao X (2003) Depletion of intracellular Ca2+ stores sensitizes the flow-induced Ca2+ influx in rat endothelial cells. Circ Res 92:286–292.

    Article  PubMed  Google Scholar 

  • Lane JW, McBride DW Jr, Hamill OP (1991) Amiloride block of the mechanosensitive cation channel in Xenopus oocytes. J Physiol 441:347–366.

    PubMed  Google Scholar 

  • Lane JW, McBride DW Jr, Hamill OP (1992) Structure–activity relations of amiloride and some of its analogues in blocking the mechanosensitive channel in Xenopus oocytes. Br J Pharmacol 106:283–286.

    PubMed  Google Scholar 

  • Lee EH, Cherednichenko G, Pessah IN, Allen PD (2006) Functional coupling between TRPC3 and RyR1 regulates the expressions of key triadic proteins. J Biol Chem 281:10042–10048.

    Article  PubMed  Google Scholar 

  • Lee J, Ishihara A, Oxford G, Johnson B, Jacobson K (1999) Regulation of cell movement is mediated by stretch-activated calcium channels. Nature 400:382–386.

    Article  PubMed  ADS  Google Scholar 

  • Lehtonen JY, Kinnunen PK (1995) Phospholipase A2 as a mechanosensor. Biophys J 68 1888–1894.

    Article  PubMed  Google Scholar 

  • Levina, N, Tötemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor pressure by activation of MscS and MscL mechanosensitive channels: identification of genes for MscS activity. EMBO J 18:1730–1737.

    Article  PubMed  Google Scholar 

  • Lièvremont JP, Bird GS, Putney JW Jr (2004) Canonical transient receptor potential TRPC7 can function as both a receptor- and store-operated channel in HEK-293 cells. Am J Physiol 287:C1709–C1716.

    Article  Google Scholar 

  • Lièvremont JP, Numaga T, Vazquez G, Lemonnier L, Hara Y, Mori E, Trebak M, Moss SE, Bird GS, Mori Y, Putney JW Jr (2005) The role of canonical transient receptor potential 7 in B-cell receptor-activated channels. J Biol Chem 280:35346–35351.

    Article  PubMed  Google Scholar 

  • Lindahl M, Backman E, Henriksson KG, Gorospe JR, Hoffman EP (1995) Phospholipase A2 activity in dystrophinopathies. Neuromusc Disord 5:193–199.

    Article  PubMed  Google Scholar 

  • Lintschinger B, Balzer-Geldsetzer M, Baskaran T, Graier WF, Romanin C, Zhu MX, Groschner K (2000) Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+-sensitive cation channels. J Biol Chem 275:27799–27805.

    PubMed  Google Scholar 

  • Liman E, Corey DP, Dulac C (1999) TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Aacd Sci USA 96:5791–5796.

    Article  ADS  Google Scholar 

  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferell JE, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241.

    Article  PubMed  Google Scholar 

  • Liu X, Wang W, Singh BB, Lockwich T, Jadlowiec J, O’Connell B, Wellner R, Zhu MX, Ambudkar IS (2000) TRP1, a candidate protein for the store-operated Ca2+ influx mechanism in salivary gland cells. J Biol Chem 275:3403–3411.

    Article  PubMed  Google Scholar 

  • Liu X, Singh BB, Ambudkar IS (2003) TRPC1 is required for functional store-operated channels. J Biol Chem 278:11337–11343.

    Article  PubMed  Google Scholar 

  • Liu X, Bandyopadhyay BC, Singh BB, Groschner K, Ambudkar IS (2005) Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. J Biol Chem 280:21600–21606.

    Article  PubMed  Google Scholar 

  • Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS (2000) Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem 275:11934–11942.

    Article  PubMed  Google Scholar 

  • Ma R, Rundle D, Jacks J, Koch M, Downs T, Tsiokas L (2003) Inhibitor of myogenic family, a novel suppressor of store-operated currents through an interaction with TRPC1. J Biol Chem 278:52763–52772.

    Article  PubMed  Google Scholar 

  • Markin VS, Sachs F (2007) Thermodynamics of mechanosensitivity. Curr Top Membr 58:87–119.

    Article  Google Scholar 

  • Maroto R, Hamill OP (2007) MscCa regulation of tumor cell migration and metastasis. Curr Top Membr 59:485–509.

    Article  Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185.

    Article  PubMed  Google Scholar 

  • Martinac B (2007) 3.5 Billion years of mechanosensory transduction: structure and function of mechanosensitive channels in prokaryotes. Curr Top Membr 58:25–57.

    Article  Google Scholar 

  • Martinac B, Hamill OP (2002) Gramicidin A channels switch between stretch-activation and stretch-inactivation depending upon bilayer thickness. Proc Natl Acad Sci USA 99:4308–4312.

    Article  PubMed  ADS  Google Scholar 

  • Martinac B, Adler J, Kung C (1990) Mechanosensitive channels of E. coli activated by amphipaths. Nature 348:261–263.

    Article  PubMed  ADS  Google Scholar 

  • Maruyama Y, Nakanishi Y, Walsh EJ, Wilson DP, Welsh DG, Cole WC (2006) Heteromultimeric TRPC6-TRPC7 channels contribute to arginine vasopressin-induced cation current of A7r5 vascular smooth muscle. Circ Res 98:1520–1527.

    Article  PubMed  Google Scholar 

  • Matsumoto H, Baron CB, Coburn RF (1995) Smooth muscle stretch-activated phospholipase C activity. Am J Physiol 268:C458–C465.

    PubMed  Google Scholar 

  • Matthews BD, Thodeki CK, Ingber DE (2007) Activation of mechanosensitive ion channels by forces transmitted through integrins and the cytoskeleton. Curr Top Membr 58:59–85.

    Article  Google Scholar 

  • McBride DW Jr, Hamill OP (1992) Pressure-clamp: a method for rapid step perturbation of mechanosensitive channels. Pfluegers Arch 421:606–612.

    Article  Google Scholar 

  • McBride DW Jr, Hamill OP (1993) Pressure-clamp techniques for measurement of the relaxation kinetics of mechanosensitive channels. Trends Neurosci 16:341–345.

    Article  PubMed  Google Scholar 

  • McBride DW Jr, Hamill OP (1995) A fast pressure clamp technique for studying mechano-gated channels. In: Sakmann B, Neher E (eds) Single channel recording, 2nd edn. Plenum, New York, pp 329–340.

    Google Scholar 

  • McBride DW Jr, Hamill OP (1999) A simplified fast pressure-clamp technique for studying mechanically-gated channels. Methods Enzymol 294:482–489.

    Article  PubMed  Google Scholar 

  • McKay RR, Szymeczek-Seay CL, Lièvremont JP, Bird GS, Zitt C, Jüngling E, Lückhoff A, Putney JW Jr (2000) Cloning and expression of the human transient receptor potential 4 (TRP4) gene: localization and functional expression of human TRP4 and TRP3. Biochem J 351:735–746.

    Article  PubMed  Google Scholar 

  • Mery L, Strauss B, Dufour JF, Krause KH, Hoth M (2002) The PDZ-interacting domain of TRPC4 controls its localization and surface expression in HEK293 cells. J Cell Sci 15:3497–3508.

    Google Scholar 

  • Minke B, Cook B (2002) TRP channel proteins and signal transduction. Physiol Revs 82 429–472.

    Google Scholar 

  • Minke B, Wu C, Pak WL (1975) Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature 258:84–87.

    Article  PubMed  ADS  Google Scholar 

  • Mitchell CH, Zhang JJ, Wang L, Jacob TJC (1997) Volume-sensitive chloride current in pigmented ciliary epithelial cells: role of phospholipases. Am J Physiol 272:C212–C222.

    PubMed  Google Scholar 

  • Montell C (2005) The TRP superfamily of cation channels. Science STKE re3:1–24.

    Google Scholar 

  • Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323.

    Article  PubMed  Google Scholar 

  • Moore AL, Roe MW, Melnick RF, Lidofsky SD (2002) Calcium mobilization evoked by hepatocellular swelling is linked to activation of phospholipase Cv. J Biol Chem 277:34030–34035.

    Article  PubMed  Google Scholar 

  • Moore TM, Brough GH, Babal P, Kelly JJ, Li M, Stevens T (1998) Store-operated calcium entry promotes shape changes in pulmonary endothelial cells expressing TRP1. Am J Physiol 275:L574–L582.

    PubMed  Google Scholar 

  • Mori Y, Wakamori M, Miyakaw T, Hermosura M, Hara Y, Nishida M, Hirose K, Mizushima A, Kurosaki M, Mori E, Gotoh K, Okada T (2002) Transient receptor potential regulates capacitative Ca2+ entry and Ca2+ release from endoplasmic reticulum in B lymphocytes. J Exp Med 195:673–681.

    Article  PubMed  Google Scholar 

  • Morris CE, Horn R (1991) Failure to elicit neuronal macroscopic mechanosensitive currents anticipated by single-channel studies. Science 251:1246–1249.

    Article  PubMed  ADS  Google Scholar 

  • Morris CE, Juranka PF (2007) Lipid stress at play: mechanosensitivity of voltage-gated channels. Curr Top Membr 59:297–338.

    Article  Google Scholar 

  • Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S, Shigekawa M, Imaizumi Y (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93:829–838.

    Article  PubMed  Google Scholar 

  • Nauli SM, Zhou J (2004) Polycystins and mechanosensation in renal and nodal cilia. Bioessays 26:844–856.

    Article  PubMed  Google Scholar 

  • Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Elia A, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in primary cilium of kidney cells. Nat Genet 33:129–137.

    Article  PubMed  Google Scholar 

  • Nilius B, Voets T (2005) TRP channels: a TR(I) P through a world of multifunctional cation channels. Pfluegers Arch 451:1–10.

    Article  Google Scholar 

  • Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptors potential cation channels in disease. Physiol Revs 87:165–217.

    Article  Google Scholar 

  • Numata T, Shimizu T, Okada Y (2007) TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. Am J Physiol 292:C460–C467.

    Article  Google Scholar 

  • Obukhov AG, Nowycky MC (2004) TRPC5 activation kinetics are modulated by the scaffolding protein ezrin/radixin/moesin-binding phosphoprotein-50 (EBP50). J Cell Physiol 201:227–235.

    Article  PubMed  Google Scholar 

  • Obukhov AG, Nowycky MC (2005) A cytosolic residue mediates Mg2+ block and regulates inward current amplitude of a transient receptor potential channel. J Neurosci 25:1234–1239.

    Article  PubMed  Google Scholar 

  • Ohata H, Tanaka K, Maeyama N, Ikeuchi T, Kamada A, Yamamoto M, Momose K (2001) Physiological and pharmacological role of lysophosphatidic acid as modulator in mechanotransduction. Jpn J Physiol 87:171–176.

    Google Scholar 

  • Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, Mori Y (1999) Molecular and functional characterization of a novel mouse transient receptor potential homologue TRP7. J Biol Chem 274:27359–27370.

    Article  PubMed  Google Scholar 

  • O’Neil RG, Heller S (2005) The mechanosensitive nature of TRPV channels. Pfluegers Arch 451:193–203.

    Article  Google Scholar 

  • Opsahl LR, Webb WW (1994) Transduction of membrane tension by the ion channel alamethicin. Biophys J 66:71–74.

    Article  PubMed  Google Scholar 

  • Owsianik G, D’Hoedt D, Voets T, Nilius B (2006) Structure–function relationship of the TRP channel superfamily. Rev Physiol Biochem Pharmacol 156:61–90.

    Article  PubMed  Google Scholar 

  • Palmer CP, Zhou XL, Lin J, Loukin SH, Kung C, Saimi Y (2001) A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca permeable channel in the yeast vacuolar membrane. Proc Natl Acad Sci USA 98:7801–7805.

    Article  PubMed  ADS  Google Scholar 

  • Paoletti P, Ascher P (1994) Mechanosensitivity of NMDA receptors in cultured mouse central neurons. Neuron 13:645–655.

    Article  PubMed  Google Scholar 

  • Paolini C, Fessenden JD, Pessah IN, Franzini-Armstrong C (2004) Evidence for conformational coupling between two calcium channels. Proc Natl Acad Sci USA 101:12748–12752.

    Article  PubMed  ADS  Google Scholar 

  • Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810.

    Article  PubMed  Google Scholar 

  • Paria PC, Malik AB, Kwiatek AM, Rahman A, May MJ, Ghosh S, Tiruppathi C (2003) Tumor necrosis factor-3 induces nuclear factor- B-dependent TRPC1 expression in endothelial cells. J Biol Chem 278 37195–37203.

    Article  PubMed  Google Scholar 

  • Park KS, Kim Y, Lee Y, Earm YE, Ho WK (2003) Mechanosensitive cation channels in arterial smooth muscle cells are activated by diacylglycerol and inhibited by phospholipase C inhibitor. Circ Res 93:557–564.

    Article  PubMed  Google Scholar 

  • Patel AJ, Honoré E (2001) Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci 24:339–346.

    Article  PubMed  Google Scholar 

  • Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJS, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP (2006) Amplification of CRA current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8:771–773.

    Article  PubMed  Google Scholar 

  • Pellegrino M, Pellegrini M (2007) Mechanosensitive channels in neurite outgrowth. Curr Top Membr 59:111–125.

    Article  Google Scholar 

  • Perbal G, Driss-Ecole D (2003) Mechanotransduction in gravisensing cells. Trends Plant Sci 8:498–504.

    Article  PubMed  Google Scholar 

  • Perozo E, Kloda A, Cortes DM, Martinac B (2002) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9:696–703.

    Article  PubMed  Google Scholar 

  • Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AW (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599.

    Article  PubMed  ADS  Google Scholar 

  • Philipp S, Hambrecht J, Braslavski L, Schroth G, Freichel M, Murakami M, Cavalié A, Flockerzi V (1998) A novel capacitive calcium entry channels expressed in excitable cells. EMBO J 17:4274–4282.

    Article  PubMed  Google Scholar 

  • Phillip S, Torst C, Warnat J, Rautmann J, Himmerkus N, Schroth G, Kretz O, Nastainczyk W, Cacalie A, Hoth M, Flockerzi V (2000) TRPC4 (CCE1) is part of native Ca2+ release-activated Ca2+ like channels in adrenal cells. J Biol Chem 275:23965–23972.

    Article  Google Scholar 

  • Pickard BG (2007) Delivering force and amplifying signals in plant mechanosensing. Curr Top Membr 58:361–392.

    Article  Google Scholar 

  • Plant TD, Schaefer M (2005) Receptor-operated cation channels formed by TRPC4 and TRPC5. Naunyn Schmiedebergs Arch Pharmacol 371:266–276.

    Article  PubMed  Google Scholar 

  • Powl AM, Lee AG (2007) Lipid effects on mechanosensitive channels. Curr Top Membr 58:151–178.

    Article  Google Scholar 

  • Praetorius HA, Spring KR (2005) A physiological view of the primary cilium. Annu Rev Physiol 67:515–529.

    Article  PubMed  Google Scholar 

  • Protasi F (2002) Structural interactions between RYRs and DHPs in calcium release units of cardiac and skeletal muscle cells. Front Biosci 7:650–658.

    Article  Google Scholar 

  • Putney JW Jr, Trebak M, Vazquez G, Wedel B, Bird GS (2004) Signaling mechanisms for TRPC3 channels. Novartis Found Symp 258:123–139.

    Article  PubMed  Google Scholar 

  • Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647.

    Article  PubMed  Google Scholar 

  • Rao JN, Platoshyn O, Golovina VA, Liu L, Zou T, Marasa BS, Turner DJ, Yuan JXJ, Wang JY (2006) TRPC1 functions as a store-operated Ca2+ channel in intestinal epithelial cells and regulates mucosal restitution after wounding. Am J Physiol 290:G782–G792.

    Google Scholar 

  • Reading SA, Earley S, Waldron BJ, Welsh DJ, Brayden JE (2005) TRPC3 mediates pyridine receptor-induced depolarization of cerebral arteries. Am J Physiol 288 H2055–H2061.

    Google Scholar 

  • Reifarth FW, Clauss W, Weber WM (1999) Stretch-independent activation of the mechanosensitive cation channel in oocytes of Xenopus laevis. Biochim Biophys Acta 1417:63–76.

    Article  PubMed  Google Scholar 

  • Reiser J, Polu KR, Möller CC, Kemlan P, Altinas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugmoto H, (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744.

    Article  PubMed  Google Scholar 

  • Riccio A, Mattei C, Kelsell RE, Medhurst AD, Calver AR, Randall AD, Davis JB, Benham CD, Pangalos MN (2002a) Cloning and functional expression of human short TRP7, a candidate protein for store operated Ca2+ influx. J Biol Chem 277:12302–12309.

    Article  PubMed  Google Scholar 

  • Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, Benham CD, Pangalos MN (2002b) mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Mol Brain Res 109:95–104.

    Article  PubMed  Google Scholar 

  • Rohács T, Lopez Cm, Michailidis I, Logothetis DE (2005) PI(4, 5) P2 regulates the activation and desensitization of TRPM6 channels through the TRP domain. Nat Neurosci 8:626–634.

    Article  PubMed  Google Scholar 

  • Roos J, DiGreorio PJ, Yeramin AV, Ohlsen K, Liodyno M, Zhang S, Safrina O, Kazak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445.

    Article  PubMed  Google Scholar 

  • Rosales OR, Isales CM, Barrett PQ, Brophy C, Sumpio BE (1997) Exposures of endothelial cells to cyclic strain induces elevations of cytosolic Ca2+ concentration through mobilization of intracellular and extracellular pools. Biochem J 326:385–392.

    PubMed  Google Scholar 

  • Ruknudin A, Song MJ, Sachs F (1991) The ultrastructure of patch-clamped membranes: a study using high voltage electron microscopy. J Cell Biol 112:125–134.

    Article  PubMed  Google Scholar 

  • Rüsch A, Kros CJ, Richardson GP (1994) Block by amiloride and its derivatives of mechano-electrical transduction in outer hair cells of mouse cochlear cultures. J Physiol 474:75–86.

    PubMed  Google Scholar 

  • Ruwhof C, Van Wamel JET, Noordzij LAW, Aydin S, Harper JCR, Van Der Laarse A (2001) Mechanical stress stimulates phospholipase C activity and intracellular calcium ion levels in neonatal rat cardiomyocytes. Cell Calcium 29:73–83.

    Article  PubMed  Google Scholar 

  • Ryan MJ, Gross KW, Hajduczok G (2000) Calcium-dependent activation of phospholipase C by mechanical distension in renin-expressing As4.1 cells. Am J Physiol 279:E823–E829.

    Google Scholar 

  • Sachs F (1988) Mechanical transduction in biological systems. CRC Crit Revs Biomed Eng 16:141–169.

    Google Scholar 

  • Sackin H (1989) A stretch-activated K+ channel sensitive to cell volume. Proc Natl Acad Sci USA 86:1731–1735.

    Article  PubMed  ADS  Google Scholar 

  • Saimi Y, Zhou X, Loukin SH, Haynes WJ, Kung C (2007) Microbial TRP channels and their mechanosensitivity. Curr Top Membr 58:311–327.

    Article  Google Scholar 

  • Saleh SN, Albert AP, Pepeiatt CM, Large WA (2006) Angiotensin II activates two cation conductances with distinct TRPC1 and TRPC6 channel properties in rabbit mesenteric artery myocytes. J Physiol 577 2:479–495.

    Article  Google Scholar 

  • Sampieri A, Diaz-Munoz M, Antaramian A, Vaca L (2005) The foot structure form the type 1 ryanodine receptor is required for functional coupling to store-operated channels. J Biol Chem 280:24804–24815.

    Article  PubMed  Google Scholar 

  • Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, Shultz G (2000) Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem 275:17517–17526.

    Article  PubMed  Google Scholar 

  • Shuttleworth TJ, Thompson JL, Mignen O (2004) ARC channels: a novel pathway for receptor-activated Ca2+ entry. Physiology 19:355–361.

    Article  PubMed  Google Scholar 

  • Sinkins WG, Estacion M, Schilling WP (1998) Functional expression of TRPC1: a human homologue of the Drosophila TRP channel. Biochem J 331:331–339.

    PubMed  Google Scholar 

  • Sinkins WG, Goel M, Estacion M, Schilling WP (2004) Association of immunophilins with mammalian TRPC channels. J Biol Chem 279:34521–34529.

    Article  PubMed  Google Scholar 

  • Slish DF, Welsh DG, Brayden JE (2002) Diacylglycerol and protein kinase C activate cation channels in myogenic tone. Am J Physiol 283:H2196–H2201.

    Google Scholar 

  • Soboloff J, Spassova M, Xu W, He LP, Cuesta N, Gill DL (2005) Role of endogenous TRPC6 channels in Ca2+ signal generation in A7r5 Smooth muscle cells. J Biol Chem 280:39786–39794.

    Article  PubMed  Google Scholar 

  • Sossey-Alaoui K, Lyon JA, Jones L, Abidi FE, Hartung AJ, Hane B, Schwarz CE, Stevenson RE, Srivastava AK (1999) Molecular cloning and characterization of TRPC5 (HTRPC5), the human homolog of a mouse brain receptor-activated capacitative Ca2+ entry channel. Genomics 60:330–340.

    Article  PubMed  Google Scholar 

  • Small DL, Morris CE (1994) Delayed activation of single mechanosensitive channels in Lymnaea neurons. Am J Physiol 267:C598–C606.

    PubMed  Google Scholar 

  • Smani T, Zakharov SI, Leno E, Csutoras P, Trepakova ES, Bolotina VM (2003) Ca2+-independent phospholipase A2 is a novel determinant of store-operated Ca2+ entry. J Biol Chem 278:11909–11915.

    Article  PubMed  Google Scholar 

  • Smani T, Zakharov SI, Csutoras P, Leno E, Trepakova ES, Bolotina VM (2004) A novel mechanism for the store-operated calcium influx pathway. Nat Cell Biol 6:113–120.

    Article  PubMed  Google Scholar 

  • Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad USA 103:16586–16591.

    Article  ADS  Google Scholar 

  • Spehr M, Hatt H, Wetzel CH (2002). Arachidonic acid plays a role in rat vomeronasal signal transduction. J Neurosci 22:8429–8437.

    PubMed  Google Scholar 

  • Stamboulian S, Moutin MJ, Treves S, Pochon N, Grunwald D, Zorzato F, Waard MD, Ronjat M, Arnoult C (2005) Junctate, an inositol 1, 4, 5-triphosphate receptor associated protein is present in sperm and binds TRPC2 and TRPC5 but not TRPC1 channels. Dev Biol 286:326–337.

    Article  PubMed  Google Scholar 

  • Strotmann R, Harteneck C, Nunnemacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702.

    Article  PubMed  Google Scholar 

  • Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 from a novel cation channel in mammalian brain. Neuron 29:645–655.

    Article  PubMed  Google Scholar 

  • Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278:39014–39019.

    Article  PubMed  Google Scholar 

  • Suchyna TM, Sachs F (2007) Mechanosensitive channel properties and membrane mechanics in dystrophic myotubes. J Physiol 581:369–387.

    Article  PubMed  Google Scholar 

  • Suchyna TM, Johnson JH, Hamer K, Leykam JF, Hag DA, Clemo HF, Baumgarten CM, Sachs F (1998) Identification of a peptide toxin from Grammostola spatula spider venom that blocks cation selective stretch-activated channels. J Gen Physiol 115:583–598.

    Article  Google Scholar 

  • Suchyna TM, Tape SE, Koeppe RE III, Anderson OS, Sachs F, Gottlieb PA (2004) Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enatiomers. Nature 430:235–240.

    Article  PubMed  ADS  Google Scholar 

  • Sukharev S (2002) Purification of the small mechanosensitive channel in Escherichia coli (MScS): the subunit structure, conduction and gating characteristics. Biophys J 83:290–298.

    Article  PubMed  Google Scholar 

  • Sukharev SI, Martinac B, Arshavsky VY, Kung C (1993) Two types of mechanosensitive channels in the E. coli cell envelope: solubilization and functional reconstitution. Biophys J 65:177–183.

    Article  PubMed  Google Scholar 

  • Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994) A large-conductance mechanosensitive channel in E. coli encoded by MscL alone. Nature 368:265–268.

    Article  PubMed  ADS  Google Scholar 

  • Tang Y, Tang J, Chen Z, Torst C, Flockerzi V, Li M, Ramesh V, Zhu MX (2000) Association of mammalian trp4 and phospholipase C isozymes with a PDZ domain-containing protein, NHERF. J Biol Chem 275:37559–37564.

    Article  PubMed  Google Scholar 

  • Tomita Y, Kaneko S, Funayama M, Kondo H, Satoh M, Akaike A (1998) Intracellular Ca2+ store operated influx of Ca2+ through TRP-R a rat homolog of TRP, expressed in Xenopus oocyte. Neurosci Lett 248:195–198.

    Article  PubMed  Google Scholar 

  • Torihashi S, Fujimoto T, Trost C, Nakayama S (2002) Calcium oscillation linked to pacemaking of intestinal cells of Cajal: requirement of calcium influx and localization of TRPC4 in caveolae. J Biol Chem 277:19191–19197.

    Article  PubMed  Google Scholar 

  • Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP (1999) Specific association of the gene product of pkD2 with the TRPC1 channel. Proc Natl Acad Sci USA 96:3934–3939.

    Article  PubMed  ADS  Google Scholar 

  • Trebak M, Bird GS, Mckay RR, Putney JW (2002) Comparison of human TRPC3 channels in receptor-activated and store-operated modes. Differential sensitivity to channel blockers suggests fundamental differences in channel composition. J Biol Chem 277:21617–21623.

    Article  PubMed  Google Scholar 

  • Treves S, Franzini-Armstrong C, Moccagatta L, Arnoult C, Grasso C, Schrum A, Ronjat M, Zorzato F (2004) Junctate is a key element in calcium entry induced by activation of InsP3 receptors and/or calcium store depletion. J Cell Biol 166:537–548.

    Article  PubMed  Google Scholar 

  • Tryggvason K, Wartiovaara J (2005) How does the kidney filter plasma? Physiology 20:96–101.

    Article  PubMed  Google Scholar 

  • Vaca L, Sampieri A (2002) Calmodulin modulates the delay period between the release of calcium from internal stores and activation of calcium influx via endogenous TRP1 channels. J Biol Chem 277:42178–42187.

    Article  PubMed  Google Scholar 

  • Vandebrouck C, Martin D, Colson-Van Schoor M, Debaix H, Gailly P (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158:1089–1096.

    Article  PubMed  Google Scholar 

  • Vandorpe DH, Morris CE (1992) Stretch activation of the Aplysia S-channel. J Membr Biol 127:205–214.

    PubMed  Google Scholar 

  • Vannier B, Peyton M, Boulay G, Brown D, Qin N, Jiang M, Zhu X, Birnbaumer L (1999) Mouse trp2, the homologue of the human trpc2 pseudogene encodes mTrp2, a store depletion-activated capacitive Ca2+ entry channel. Proc Natl Acad USA 96:2060–2064.

    Article  ADS  Google Scholar 

  • Vanoye CG, Reuss L (1999) Stretch-activated single K+ channels account for whole-cell currents elicited by swelling. Proc Natl Acad Sci USA 96:6511–6516.

    Article  PubMed  ADS  Google Scholar 

  • Vazquez G, Lièvremont PP, Bird GS, Putney JW Jr (2001) Human Trp3 forms both inositol trisphosphate receptor-dependent and receptor-independent store-operated cation channels in DT40 avian B lymphocytes. Proc Natl Acad Sci USA 98:11777–11782.

    Article  PubMed  ADS  Google Scholar 

  • Vazquez G, Wedel BJ, Trebak M, Bird GS, Putney JW Jr (2003) Expression levels of the canonical transient receptor potential 3 (TRPC3) channels determine its mechanism of activation. J Biol Chem 278:21649–21654.

    Article  PubMed  Google Scholar 

  • Vazquez G, Wedel BJ, Aziz O, Trebak M, Putney JW Jr (2004a) The mammalian TRPC cation channels. Biochim Biophys 1742:21–36.

    Google Scholar 

  • Vazquez G, Wedel BJ, Kawasaki BT, Bird GS, Putney JW (2004b) Obligatory role of src kinase in the signaling mechanism for TRPC3 cation channels. J Biol Chem 279:40521–40528.

    Article  PubMed  Google Scholar 

  • Vazquez G, Bird GSJ, Mori Y, Putney JW (2006) Native TRPC7 channel activation by an inositol trisphosphate receptor-dependent mechanism. J Biol Chem 281:25250–25258.

    Article  PubMed  Google Scholar 

  • Venkatachalam K, Zheng F, Gill DL (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 278:29031–29040.

    Article  PubMed  Google Scholar 

  • Villereal ML (2006) Mechanism and functional significance of TRPC channel multimerization. Semin Cell Devel Biol 17:618–629.

    Article  Google Scholar 

  • Voets T, Talavera K, Owsiannik G, Nilius B (2005) Sensing with TRP channels. Nat Chem Biol 1:85–92.

    Article  PubMed  Google Scholar 

  • Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci USA 101:396–401.

    Article  PubMed  ADS  Google Scholar 

  • Walker RG, Willingham AT, Zucker CS (2000) A Drosophilia mechanosensory transduction channel. Science 287:2229–2234.

    Article  PubMed  ADS  Google Scholar 

  • Wang JHC, Thampatty BP (2006) An introductory review of cell mechanobiology. Biomech Model Mechanobiol 5:1–16.

    Article  PubMed  MATH  Google Scholar 

  • Wang SQ, Song LS, Lakatta EG, Cheng H (2001) Ca2+ signaling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature 410:592–596.

    Article  PubMed  ADS  Google Scholar 

  • Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434–438.

    Article  PubMed  ADS  Google Scholar 

  • Weber WM, Popp C, Clauss W, van Driessche W (2000) Maitotoxin induces insertion of different ion channels into the Xenopus oocyte plasma membrane via Ca2+-stimulated exocytosis. Pfluegers Arch 439:363–369.

    Article  Google Scholar 

  • Welsh DG, Nelson MT, Eckman DM, Brayden JE (2000) Swelling activated cation channels mediate depolarization of rat cerebrovascular smooth muscle by hypotonicity and intravascular pressure. J Physiol 527 1:139–148.

    Article  Google Scholar 

  • Welsh DG, Morielli AD, Nelson MT, Brayden JE (2002) Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 90:248–250.

    Article  PubMed  Google Scholar 

  • Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store operated channel. Proc Natl Acad Sci USA 92:9652–9656.

    Article  PubMed  ADS  Google Scholar 

  • Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental Glomerulosclerosis. Science 308:1801–1804.

    Article  PubMed  ADS  Google Scholar 

  • Wu X, Babnigg G, Zagranichnaya T, Villereal ML (2002) The role of endogenous human TRP4 in regulating carbachol-induced calcium oscillations in HEK-293 cells. J Biol Chem 277:13597–13608.

    Article  PubMed  Google Scholar 

  • Xu H, Zhao H, Tian W, Yoshida K, Roullet JP, Cohen DM (2003) Regulation of a transient receptor potential (TRP) channel by tyrosine phosphorylation. J Biol Chem 278:11520–11527.

    Article  PubMed  Google Scholar 

  • Xu SZ, Beech DJ (2001) TRPC1 is a membrane-spanning subunit of store-operated Ca2+ channels in native vascular smooth muscle cells. Circ Res 88:84–87.

    Article  PubMed  Google Scholar 

  • Xu SZ, Zeng F, Boulay G, Grimm C, Harteneck C, Beech DJ (2005) Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br J Pharmacol 145:405–414.

    Article  PubMed  Google Scholar 

  • Xu SZ, Muraki K, Zeng F, Li J, Sukumar P, Shah, S, Dedman AM, Flemming PK, McHugh D, Naylor J, Gheong A, Bateson AN, Munsch CM, Porter KE, Beech DJ (2006) a sphingosine-1-phosphate-activated calcium channel controlling vascular smooth muscle cell motility. Circ Res 98:1381–1389.

    Article  PubMed  Google Scholar 

  • Yamada H, Wakamori M, Hara Y, Takahashi Y, Konishi K, Imoto K, Mori Y (2000) Spontaneous single channel activity of neuronal TRP5 channel recombinantly expressed in HEK293 cells. Neurosci Lett 285:111–114.

    Article  PubMed  Google Scholar 

  • Yang XC, Sachs F (1989) block of stretch activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243:1068–1071.

    Article  PubMed  ADS  Google Scholar 

  • Yao Y, Ferrer-Montiel AV, Montal M, Tsien RY (1999) Activation of store-operated Ca2+ current in Xenopus oocytes requires SNAP-25 but not a diffusible messenger. Cell 98:475–485.

    Article  PubMed  Google Scholar 

  • Yeung EW, Allen DG (2004) Stretch-activated channels in stretch-induced muscle damage: role in muscular dystrophy. Clin Exp Pharmacol Physiol 31:551–556.

    Article  PubMed  Google Scholar 

  • Yildrin E, Dietrich A, Birnbaumer L (2003) The mouse C-type transient receptor potential 2 (TRPC2) channel: alternative splicing and calmodulin binding to its N terminus. Proc Natl Acad Sci USA 100:2220–2225.

    Article  ADS  Google Scholar 

  • Yu Y, Sweeney M, Zhang S, Platoshyn O, Landsberg, J, Rothman A, Yuan JX (2003) PDGF stimulates pulmonary vascular smooth muscle cells proliferation by upregulating TRPC6 expression. Am J Physiol 284:C316–C330.

    Google Scholar 

  • Yu Y, Fantozzi I, Remillard CV, Landsberg JW, Kunichika N, Platoshyn O, Tigno DD, Thistlethwaite PA, Rubin LJ, Yuan JX (2004) Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc Natl Acad USA 101:13861–13866.

    Article  ADS  Google Scholar 

  • Yuan JP, Kislyoy K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeberg PH, Muallem S, Worley PF (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114:777–789.

    Article  PubMed  Google Scholar 

  • Yin CC, Blayney LM, Lai FA (2005) Physical coupling between ryanodine receptor-calcium release channels. J Mol Biol 349:538–546.

    Article  PubMed  Google Scholar 

  • Zagranichnaya TK, Wu X, Villereal ML (2005) Endogenous TRPC1, TRPC3 and TRPC7 proteins combined to form native store-operated channels in HEK-293 cells. J Biol Chem 280:29559–29569.

    Article  PubMed  Google Scholar 

  • Zeng F, Xu SZ, Jackson PK, McHugh D, Kumar B, Fountain SJ, Beech DJ (2004) Human TRPC5 channel activated by a multiplicity of signals in a single cell. J Physiol 559 3:739–750.

    Google Scholar 

  • Zhang Y, Hamill OP (2000a) Calcium-, voltage and osmotic stress-sensitive currents in Xenopus oocytes and their relationship to single mechanically gated channels. J Physiol 523 1:83–90.

    Article  Google Scholar 

  • Zhang Y, Hamill OP (2000b) On the discrepancy between membrane patch and whole cell mechanosensitivity in Xenopus oocytes. J Physiol 523 1:101–115.

    Article  Google Scholar 

  • Zhang Y, Gao F, Popov V, Wan J, Hamill OP (2000) Mechanically-gated channel activity in cytoskeleton deficient blebs and vesicles from Xenopus oocytes. J Physiol 523 1:117–129.

    Article  Google Scholar 

  • Zhang Y, Guo F, Kim JY, Saffen D (2006) Muscarinic acetylcholine receptors activated TRPC6 channels in PC12D cells via Ca2+ store-independent mechanisms. J Biochem 139:459–470.

    Article  PubMed  Google Scholar 

  • Zhou XL, Batiza AF, Loukin SH, Palmer CP, Kung C, Saimi Y (2003) The transient receptor potential channels on the yeast vacuole is mechanosensitive. Proc Natl Acad Sci USA 100:7105–7110.

    Article  PubMed  ADS  Google Scholar 

  • Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373:193–198.

    Article  PubMed  Google Scholar 

  • Zitt C, Zobei A, Obukhov AG, Harteneck C, Kalkbrenner F, Lückhoff A, Schultz G (1996) Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron 16:1189–1196.

    Article  PubMed  Google Scholar 

  • Zitt C, Obukhov AG, Strübing C, Zobel A, Kalkbrenner F, Lückhoff A, Schultz G (1997) Expression of TRPC3 in Chinese hamster ovary cells results in calcium-activated cation currents not related to store depletion. J Cell Biol 138:1333–1341.

    Article  PubMed  Google Scholar 

  • Zufall F, Ukhanov K, Lucas P, Leinders-Zufall T (2005) Neurobiology of TRPC2: from gene to behavior. Pfluegers Arch 451:61–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hamill, O.P., Maroto, R. (2008). TRPC Family of Ion Channels and Mechanotransduction. In: Martinac, B. (eds) Sensing with Ion Channels. Springer Series in Biophysics, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72739-2_7

Download citation

Publish with us

Policies and ethics