Skip to main content

Roles of Ion Channels in the Environmental Responses of Plants

  • Chapter

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 11))

When plant cells are exposed to environmental stresses or perceive internal signal molecules involved in growth and development, ion channels are transiently activated to convert these stimuli into intracellular signals. Among the ions taken up by plant cells, Ca2+ plays an essential role as an intracellular second messenger in plants; the cytoplasmic free Ca2+ concentration ([Ca2+]c) is therefore strictly regulated. Signal transduction pathways mediated by changes in [Ca2+]c – termed Ca2+ signaling – are initiated by the activation of Ca2+-permeable channels in many cases. To date, a large body of electrophysiological and recent molecular biological studies have revealed that plants possess Ca2+ channels belonging to distinct types with different gating mechanisms, and a variety of genes for Ca2+-permeable channels have been isolated and functionally characterized. Topics in this chapter focus on long-distance signal translocation in plants and the characteristics of a variety of plant Ca2+-permeable channels including voltage-dependent Ca2+-permeable channels, cyclic nucleotide-gated cation channels, ionotropic glutamate receptors and mechanosensitive channels. We discuss their roles in environmental responses and in the regulation of growth and development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182.

    Article  PubMed  Google Scholar 

  • Arazi T, Kaplan B, Fromm H (2000) A high-affinity calmodulin-binding site in a tobacco plasma-membrane channel protein coincides with a characteristic element of cyclic nucleotide-binding domains. Plant Mol Biol 42:591–601.

    Article  PubMed  Google Scholar 

  • Balague C, Lin B, Alcon C, Flottes G, Malmstrom S, Köhler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15:365–379.

    Article  PubMed  Google Scholar 

  • Barreiro G, Guimarães CRW, Alencastro RB (2002) A molecular dynamics study of an L-type calcium channel model. Protein Eng 15:109–122.

    Article  PubMed  Google Scholar 

  • Baum G, Long JC, Jenkins GI, Trewavas AJ (1999) Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Proc Natl Acad Sci USA 96:13554–13559.

    Article  PubMed  ADS  Google Scholar 

  • Borsics T, Webb D, Andeme-Ondzighi C, Staehelin LA, Christopher DA (2007) The cyclic nucleotide-gated calmodulin-binding channel AtCNGC10 localizes to the plasma membrane and influences numerous growth responses and starch accumulation in Arabidopsis thaliana. Planta 225:563–573.

    Article  PubMed  Google Scholar 

  • Botting D (1973) Humboldt and the Cosmos. Harper and Row, New York.

    Google Scholar 

  • Chan CWM, Schorrak LM, Smith RK, Bent AF, Sussman MR (2003) A cyclic nucleotide-gated ion channel, CNGC2, is crucial for plant development and adaptation to calcium stress. Plant Physiol 132:728–731.

    Article  PubMed  Google Scholar 

  • Clemens S, Antosiewitcz DM, Ward JM, Schachtman DP, Schroeder JI (1998) The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc Natl Acad Sci USA 95:12043–12048.

    Article  PubMed  ADS  Google Scholar 

  • Clough SJ, Fengler KA, Lippok B, Smith RK, Yu IC, Bent AF (2000) The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA 97:9323–9328.

    Article  PubMed  ADS  Google Scholar 

  • Copani A, Uberti D, Sortino MA, Bruno V, Nicoletti F, Memo M (2001). Activation of cell-cycle-associated proteins in neuronal death: a mandatory or dispensable path? Trends Neurosci 24:25–31.

    Article  PubMed  Google Scholar 

  • Cramer GR, Jones RL (1996) Osmotic stress and abscisic acid reduce cytosolic calcium activities in roots of Arabidopsis thaliana. Plant Cell Environ 19:1291–1298.

    Article  Google Scholar 

  • Dennison KL, Spalding EP (2000) Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol 124:1511–1514.

    Article  PubMed  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61.

    PubMed  Google Scholar 

  • Durell SR, Guy HR (2001) A putative prokaryote voltage-gated Ca2+ channel with only one 6TM motif per subunit. Biochem Biophys Res Commun 281:741–746.

    Article  PubMed  Google Scholar 

  • Fischer M, Schnell N, Chattaway J, Davies P, Dixon G, Sanders D (1997) The Saccharomyces cerevisiae CCH1 gene is involved in calcium influx mating. FEBS Lett 419:259–262.

    Article  PubMed  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446.

    Article  PubMed  ADS  Google Scholar 

  • Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 273:463–469.

    Article  Google Scholar 

  • Furuichi T, Muto S (2005) H+-Coupled sugar transporter, an initiator of sugar-induced Ca2+-signaling in plant cells. Z Naturforsch 60c:764–768.

    Google Scholar 

  • Furuichi T, Kawano T (2006a) Biochemistry and cell biology of calcium channels and signaling involved in plant growth and environmental responses. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues (1st edn). Global Science Books, London, pp 26–36.

    Google Scholar 

  • Furuichi T, Kawano T (2006b) Nitrate and ammonium-induced Ca2+ influx in arabidopsis leaf cells. Bull Nippon Sport Sci Univ 35:227–232.

    Google Scholar 

  • Furuichi T, Cunningham KW, Muto S (2001a) A putative two pore channel AtTPC1 mediates Ca2+ flux in Arabidopsis leaf cells. Plant Cell Physiol 42:900–905.

    Article  PubMed  Google Scholar 

  • Furuichi T, Mori IC, Takahashi K, Muto S (2001b) Sugar-induced increase in cytosolic Ca2+ in Arabidopsis thaliana whole plants. Plant Cell Physiol 42:1149–1155.

    Article  PubMed  Google Scholar 

  • Furuichi T, Matsuhashi S, Ishioka NS, Fujimaki S, Ohtsuki S, Sekine T, Kume T, Muto S (2003) Real-time monitoring for translocation and perception of signal molecules in Arabidopsis thaliana mature plant. Tiara Annu Rep 2002:129–131.

    Google Scholar 

  • Furuichi T, Wüennenberg P, Osafune T, Sokabe M, Dietrich P, Hedrich R, Muto S (2004) AtTPC1, a putative voltage-dependent calcium-permeable channel, is located in the plasma membrane and contributes to cytosolic Ca2+-signals induced by sucrose and reactive oxygen species. In: Abstracts of the 13th International Workshop on Plant Membrane Biology. July 2004, Montpellier, France, 114.

    Google Scholar 

  • Galvani L (1791) De viribus Electricitatis in Motu Musculari Commentarius. Bon Sci Art Inst Acad Commun 7:363–418.

    Google Scholar 

  • Gibson SI (2000) Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol 124:1532–15139.

    Article  PubMed  Google Scholar 

  • Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJM (2006) Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot 57:791–800.

    Article  PubMed  Google Scholar 

  • Hamilton DW, Hills A, Köhler B. Blatt MR (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA 97:4967–4972.

    Article  PubMed  ADS  Google Scholar 

  • Harada A, Sakai T, Okada K (2003) Phot1 and phot2 mediate blue light-induced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves. Proc Natl Acad Sci USA 100:8583–8588.

    Article  PubMed  ADS  Google Scholar 

  • Hashimoto K, Saito M, Matsuoka H, Iida K, Iida H (2004) Functional analysis of a rice putative voltage-dependent Ca2+ channel, OsTPC1, expressed in yeast cells lacking its homologous gene CCH1. Plant Cell Physiol 45:496–500.

    Article  PubMed  Google Scholar 

  • Haswell ES (2003) Gravity perception: how plants stand up for themselves. Curr Biol 13:R761–R763.

    Article  PubMed  Google Scholar 

  • Haswell ES, Meyerowitz EM (2006) MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr Biol 16:1–11.

    Article  PubMed  Google Scholar 

  • Hayashi H, Chino M (1990) Chemical composition of phloem sap from the uppermost internode of the rice plant. Plant Cell Physiol 31:247–251.

    Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108.

    Article  PubMed  Google Scholar 

  • Hu X, Neill SJ, Tang Z, Cai W (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol 137:663–670.

    Article  PubMed  Google Scholar 

  • Hua BG, Mercier RW, Leng Q, Berkowitz GA (2003) Plants do it differently. A new basis for potassium/sodium selectivity in the pore of an ion channel. Plant Physiol 132:1353–1361.

    Article  PubMed  Google Scholar 

  • Huala E, Oeller PW, Liscum E, Han IS, Larsen E, Briggs WR (1997) Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278:2120–2123.

    Article  PubMed  ADS  Google Scholar 

  • Humboldt A von (1797) Versuche uber die gereizte Muskel- und Nervenfaser nebst Vermuthungen uber den chemischen Process des Lebens in der Tier und Pflanzenwelt. Posen Decker & Berlin, Rottmann.

    Google Scholar 

  • Ishibashi K, Suzuki M, Imai M (2000) Molecular cloning of a novel form (two-repeat) protein related to voltage-gated sodium and calcium channels. Biochem Biophys Res Commun 270:370–376.

    Article  PubMed  Google Scholar 

  • Jiang MY, Zhang JH (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273.

    Article  PubMed  MathSciNet  Google Scholar 

  • Julien JL, Frachisse JM (1992) Involvement of the proton pump and proton conductance change in the wave of depolarization induced by wounding in Bidens pilosa. Can J Bot 70:1451–1458.

    Google Scholar 

  • Kadota Y, Furuichi T, Ogasawara Y, Goh T, Higashi K, Muto S, Kuchitsu K (2004a) Identification of putative voltage dependent Ca2+ permeable channels involved in cryptogein-induced Ca2+ transients and defense responses in tobacco BY-2 Cells. Biochem Biophys Res Commun 317:823–830.

    Article  PubMed  Google Scholar 

  • Kadota Y, Goh T, Tomatsu H, Tamauchi R, Higashi K, Muto S, Kuchitsu K (2004b) Cryptogein-induced initial events in tobacco BY-2 cells: pharmacological characterization of molecular relationship among cytosolic Ca2+ transients, anion efflux and production of reactive oxygen species. Plant Cell Physiol 45:160–170.

    Article  PubMed  Google Scholar 

  • Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–2141.

    Article  PubMed  ADS  Google Scholar 

  • Kanzaki M, Nagasawa M, Kojima I, Sato C, Naruse K, Sokabe M, Iida H (1999) Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science 285:882–886.

    Article  PubMed  Google Scholar 

  • Kato T, Morita MT, Fukaki H, Yamaguchi Y, Uehara M, Niihama M, Tasaka M (2002) SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell 14:33–46.

    Article  PubMed  Google Scholar 

  • Kawano T, Sahashi N, Takahashi K, Uozumi N, Muto S (1998) Salicylic acid induces extracellular generation of superoxide followed by an increase in cytosolic calcium ion in tobacco suspension culture: the earliest events in salicylic acid signal transduction. Plant Cell Physiol 39:721–730.

    Google Scholar 

  • Kadota Y, Furuichi T, Sano T, Kaya H, Gunji W, Murakami Y, Muto S, Hasezawa S, Kuchitsu K. (2005) Cell-cycle-dependent regulation of oxidative stress responses and Ca2+ permeable channel NtTPC1A/B in tobaccoBY-2 cells. Biochem Biophys Res Commun. 336(4): 1259–1267.

    Article  PubMed  Google Scholar 

  • Kim SA, Kwak JM, Jae SK, Wang MH, Nam HG (2001) Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol 42:74–84.

    Article  PubMed  Google Scholar 

  • Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526.

    Article  PubMed  ADS  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540.

    Article  PubMed  Google Scholar 

  • Köhler C, Neuhaus G (2000) Characterisation of calmodulin binding to cyclic nucleotide-gated ion channels from Arabidopsis thaliana. FEBS Lett 4710:133–136.

    Article  Google Scholar 

  • Köhler C, Merkle T, Neuhaus G (1999) Characterisation of a novel gene family of putative cyclic nucleotide- and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant J 18:97–104.

    Article  PubMed  Google Scholar 

  • Köhler C, Merkle T, Roby D, Neuhaus G (2001) Developmentally regulated expression of a cyclic nucleotide-gated ion channel from Arabidopsis indicates its involvement in programmed cell death. Planta 213:327–332.

    Article  PubMed  Google Scholar 

  • Kurusu T, Sakurai Y, Miyao A, Hirochika H, Kuchitsu K (2004) Identification of a putative voltage-gated Ca2+ -permeable channel (OsTPC1) involved in Ca2+ influx and regulation of growth and development in rice. Plant Cell Physiol 45:693–702.

    Article  PubMed  Google Scholar 

  • Lacombe B, Becker D, Hedrich R, DeSalle R, Hollmann M, Kwak JM, Schroeder JI, Le Novere N, Nam HG, Spalding EP, Tester M, Turano FJ, Chiu J, Coruzzi G (2001) The identity of plant glutamate receptors. Science 292:1486–1487.

    Article  PubMed  Google Scholar 

  • Lam H-M, Chiu J, Hsieh M-H, Meisel L, Oliveira IC, Shin M, Coruzzi G (1998) Glutamate-receptor genes in plants. Nature 396:125–126.

    Article  PubMed  ADS  Google Scholar 

  • Leon M, Wang Y, Jones L, Perez-Reyes E, Wei X, Soong TW, Snutch TP, Yue DT (1995) Essential Ca2+-binding motif for Ca2+-sensitive inactivation of L-type Ca2+ channels. Science 270:1502–1506.

    Article  PubMed  ADS  Google Scholar 

  • Leng Q, Mercier RW, Yao W. Berkowitz GA (1999) Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol 121:753–761.

    Article  PubMed  Google Scholar 

  • Leng Q, Mercier RW, Hua BG, Fromm H, Berkowitz GA (2002) Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol 128:400–410.

    Article  PubMed  Google Scholar 

  • Li J, Zhu S, Song X, Shen Y, Chen H, Yu J, Yi K, Liu Y, Karplus VJ, Wu P, Dend WX (2006) A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem. Plant Cell 18:340–349.

    Article  PubMed  Google Scholar 

  • Lin C, Yu Y, Kadono T, Iwata M, Umemura K, Furuichi T, Kuse M, Isobe M, Yamamoto Y, Mastumoto H, Yoshizuka K, Kawano T (2005) Action of aluminum, novel TPC1-type channel inhibitor, against salicylate-induced and cold shock-induced calcium influx in tobacco BY-2 cells. Biochem Biophys Res Commun 332:823–830.

    Article  PubMed  Google Scholar 

  • Massa GD, Gilroy S (2003) Touch and gravitropic set-point angle interact to modulate gravitropic growth in roots. Adv Space Res 31:2195–2202.

    Article  PubMed  ADS  Google Scholar 

  • Meyerhoff O, Müller K, Roelfsema MRG, Latz A, Lacombe B, Hedrich R, Dietrich P, Becker D (2005) AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold. Planta 222:418–427.

    Article  PubMed  Google Scholar 

  • Mikosch M, Hurst AC, Hertel B, Homann U (2006) Diacidic motif is required for efficient transport of the K+ channel KAT1 to the plasma membrane. Plant Physiol 142:923–930.

    Article  PubMed  Google Scholar 

  • Moore I (2002) Gravitropism: lateral thinking in auxin transport. Curr Biol 12:R482–R454.

    Article  Google Scholar 

  • Murata Y, Pei ZM, Mori IC, Schroeder J (2001) Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P) H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1–1 and abi2–1 protein phosphatase 2C mutants. Plant Cell 13:2513–2523.

    Article  PubMed  Google Scholar 

  • Muto S (1993) Intracellular Ca2+ messenger system in plants. Int Rev Cytol 142:305–345.

    Article  Google Scholar 

  • Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T, Kishigami A, Sokabe M, Kojima I, Sato S, Kato T, Tabata S, Iida K, Terashima A, Nakano M, Ikeda M, Yamanaka T, Iida H (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci USA 104:3639–3644.

    Article  PubMed  ADS  Google Scholar 

  • Ohto M, Hayashi K, Isobe M, Nakamura K (1995) Involvement of Ca2+ signaling in the sugar-inducible expression of genes coding for sporamin and r-amylase of sweet potato. Plant J 7:297–307.

    Article  Google Scholar 

  • Paganetto A, Bregante M, Downey P, Lo Schiavo F, Hoth S, Hedrich R, Gambale F (2001) A novel K+ channel expressed in carrot roots with a low susceptibility toward metal ions. J Bioenerg Biomembr 33:63–71.

    Article  PubMed  Google Scholar 

  • Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible inhibitor proteins. Science 253:895–898.

    Article  PubMed  ADS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734.

    Article  PubMed  ADS  Google Scholar 

  • Peiter E, Maathuis F, Mills L, Knight H, Pelloux J, Hetherington A, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408.

    Article  PubMed  ADS  Google Scholar 

  • Piñeros M, Tester M (1997) Calcium channels in higher plant cells: selectivity, regulation and pharmacology. J Exp Bot 48:551–577.

    Google Scholar 

  • Plieth C, Trewavas AJ (2002) Reorientation of seedlings in the Earth’s gravitational field induces cytosolic calcium transients. Plant Physiol 129:786–796.

    Article  PubMed  Google Scholar 

  • Qi Z, Stephens NR, Spalding EP (2006) Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant Physiol 142:963–971.

    Article  PubMed  Google Scholar 

  • Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE (2001) A prokaryotic voltage-gated sodium channel. Science 294:2372–2375.

    Article  PubMed  ADS  Google Scholar 

  • Rhodes JD, Thain JF, Wildon DC (1996) The pathway for systemic electrical signal conduction in the wounded tomato plant. Planta 200:50–57.

    Article  Google Scholar 

  • Rook F, Geritts N, Kortstee A, van Kampe M, Borrias M, Weisbeek P, Smeekens S (1998) Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J 15:253–263.

    Article  PubMed  Google Scholar 

  • Ross ME (1996) Cell division and the nervous system: regulating the cycle from neural differentiation to death. Trends Neurosci 19:62–68.

    Article  PubMed  Google Scholar 

  • Sack FD (1997) Plastids and gravitropic sensing. Planta 203:S63–S68.

    Article  PubMed  Google Scholar 

  • Sanderfoot AA, Raikhel NV (1999) The specificity of vesicle trafficking: coat proteins and SNAREs. Plant Cell 11:629–642.

    Article  PubMed  Google Scholar 

  • Schild D, Restrepo D (1998) Transduction mechanisms in vertebrate olfactory receptor cells. Physiol Rev 78:429–466.

    PubMed  Google Scholar 

  • Scholz-Starke J, Gambale F, Carpaneto A (2005) Modulation of plant ion channels by oxidizing and reducing agents. Arch Biochem Biophys 434:43–50.

    Article  PubMed  Google Scholar 

  • Schuurink RC, Shartzer SF, Fath A. Jones RL (1998) Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone. Proc Natl Acad Sci USA 95:1944–1949.

    Article  PubMed  ADS  Google Scholar 

  • Shang ZL, Ma LG, Zhang HL, He RR, Wang XC, Cui SJ, Sun DY (2005) Ca2+ influx into lily pollen grains through a hyperpolarization-activated Ca2+-permeable channel which can be regulated by extracellular CaM. Plant Cell Physiol 46:598–608.

    Article  PubMed  Google Scholar 

  • Sheen J, Zhou L, Jang J-C (1999) Sugars as signaling molecules. Curr Opin Plant Biol 2:410–418.

    Article  PubMed  Google Scholar 

  • Sinclair W, Trewavas AJ (1997) Calcium in gravitropism. A re-examination. Planta 203:S85–S90.

    Article  PubMed  Google Scholar 

  • Stölzle S, Kagawa T, Wada M, Hedrich R, Dietrich P (2003) Blue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway. Proc Natl Acad Sci USA 100:1456–1461.

    Article  ADS  Google Scholar 

  • Sukharev SI, Martinac B, Arshavsky VY, Kung C (1993) Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys J 65:177–183.

    Article  PubMed  Google Scholar 

  • Tasaka M, Kato T, Fukaki H (1999) The endodermis and shoot gravitropism. Trends Plant Sci 4:103–107.

    Article  PubMed  Google Scholar 

  • Toyota M, Furuichi T, Tatsumi H, Sokabe M (2007) Hypergravity stimulation induces changes in intracellular calcium concentration in Arabidopsis seedlings. Adv. Space Res. 39(7): 1190–1197.

    Article  ADS  Google Scholar 

  • Tytgat J (1994) Mutations in the P-region of a mammalian potassium channel (RCK1): a comparison with the Shaker potassium channel. Biochem Biophys Res Commun 203:513–518.

    Article  PubMed  Google Scholar 

  • Wang YJ, Yu JN, Chen T, Zhang ZG, Hao YJ, Zhang JS, Chen SY (2005) Functional analysis of a putative Ca2+ channel gene TaTPC1 from wheat. J Exp Bot 56:3051–3060.

    Article  PubMed  Google Scholar 

  • Weisenseel AJ, Meyer MH (1997) Bioelectricity, gravity and plants. Planta 203:S98–S106.

    Article  PubMed  Google Scholar 

  • White PJ, Bowen HC, Demidchik V, Nichols C, Davies JM (2002) Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochim Biophys Acta 1564:299–309.

    Article  PubMed  Google Scholar 

  • Wildon DC, Doherty HM, Eagles G, Bowles DJ, Thain JF (1989) Systemic responses arising from localized heat stimuli in tomato plants. Ann Bot 64:691–695.

    Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65.

    Article  ADS  Google Scholar 

  • Wymer CL, Bibikova TN, Gilroy S (1997) Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana. Plant J 12:427–439.

    Article  PubMed  Google Scholar 

  • Yau K-W, Baylor DA (1989) Cyclic GMP-activated conductance of retinal photoreceptor cells. Annu Rev Neurosci 12:289–327.

    Article  PubMed  Google Scholar 

  • Yokohama R, Hirose T, Fujii N, Aspuria ET, Kato A, Uchimiya H (1994) The rolC promoter of Agrobacterium rhizogenes Ri plasmid is activated by sucrose in transgenic tobacco plants. Mol Gen Genet 244:15–22.

    Article  Google Scholar 

  • Yoshioka K, Moeder W, Kang HG, Kachroo P, Masmoudi K, Berkowitz G, Klessig DF (2006) The chimeric Arabidopsis CYCLIC NUCLEOTIDE-GATEDION CHANNEL11/12 activates multiple pathogen resistance responses. Plant Cell 18:747–763.

    Article  PubMed  Google Scholar 

  • Zhu Z, Budworth P, Han B, Brown D, Chang H-S, Zou G, Wang X (2001) Toward elucidating the global gene expression patterns of developing Arabidopsis: parallel analysis of 8, 300 genes by a high-density oligonucleotide probe array. Plant Physiol Biochem 39:221–242.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Furuichi, T., Kawano, T., Tatsumi, H., Sokabe, M. (2008). Roles of Ion Channels in the Environmental Responses of Plants. In: Martinac, B. (eds) Sensing with Ion Channels. Springer Series in Biophysics, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72739-2_3

Download citation

Publish with us

Policies and ethics