Skip to main content

Voltage-Gated Calcium Channels in Nociception

  • Chapter
Book cover Sensing with Ion Channels

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 11))

Voltage-gated calcium channels (VGCCs) are a large and functionally diverse group of membrane ion channels ubiquitously expressed throughout the central and peripheral nervous systems. VGCCs contribute to various physiological processes and transduce electrical activity into other cellular functions. This chapter provides an overview of biophysical properties of VGCCs, including regulation by auxiliary subunits, and their physiological role in neuronal functions. Subsequently, then we focus on N-type calcium (Cav2.2) channels, in particular their diversity and specific antagonists. We also discuss the role of N-type calcium channels in nociception and pain transmission through primary sensory dorsal root ganglion neurons (nociceptors). It has been shown that these channels are expressed predominantly in nerve terminals of the nociceptors and that they control neurotransmitter release. To date, important roles of N-type calcium channels in pain sensation have been elucidated genetically and pharmacologically, indicating that specific N-type calcium channel antagonists or modulators are particularly useful as therapeutic drugs targeting chronic and neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DJ, Smith AB, Schroeder CI, Yasuda T, Lewis RJ (2003) A-Conotoxin CVID inhibits a pharmacologically distinct voltage-sensitive calcium channel associated with transmitter release from preganglionic nerve terminals. J Biol Chem 278:4057–4062.

    PubMed  Google Scholar 

  • Adams ME, Myers RA, Imperial JS, Olivera BM (1993) Toxityping rat brain calcium channels with A-toxins from spider and cone snail venoms. Biochemistry 32:12566–12570.

    PubMed  Google Scholar 

  • Ahmadi S, Liebel JT, Zeilhofer HU (2001) The role of the ORL1 receptor in the modulation of spinal neurotransmission by nociceptin/orphanin FQ and nocistatin. Eur J Pharmacol 412:39–44.

    PubMed  Google Scholar 

  • Altier C, Zamponi GW (2004) Targeting Ca2+ channels to treat pain: T-type versus N-type. Trends Pharmacol Sci 25:465–470.

    PubMed  Google Scholar 

  • Altier C, Khosravani H, Evans RM, Hameed S, Peloquin JB, Vartian BA, Chen L, Beedle AM, Ferguson SS, Mezghrani A, Dubel SJ, Bourinet E, McRory JE, Zamponi GW (2006) ORL1 receptor-mediated internalization of N-type calcium channels. Nat Neurosci 9:31–40.

    PubMed  Google Scholar 

  • Aosaki T, Kasai H (1989) Characterization of two kinds of high-voltage-activated Ca-channel currents in chick sensory neurons. Differential sensitivity to dihydropyridines and omega-conotoxin GVIA. Pfluegers Arch 414:150–156.

    Google Scholar 

  • Atanassoff PG, Hartmannsgruber MW, Thrasher J, Wermeling D, Longton W, Gaeta R, Singh T, Mayo M, McGuire D, Luther RR (2000) Ziconotide, a new N-type calcium channel blocker, administered intrathecally for acute postoperative pain. Reg Anesth Pain Med 25:274–278.

    PubMed  Google Scholar 

  • Bangalore R, Mehrke G, Gingrich K, Hofmann F, Kass RS (1996) Influence of L-type Ca channel r2//-subunit on ionic and gating current in transiently transfected HEK 293 cells. Am J Physiol 270:H1521–H1528.

    PubMed  Google Scholar 

  • Basarsky T, Parpura V, Haydon P (1994) Hippocampal synaptogenesis in cell culture: developmental time course of synapse formation, calcium influx, and synaptic protein distribution. J Neurosci 14:6402–6411.

    PubMed  Google Scholar 

  • Bayer K, Ahmadi S, Zeilhofer HU (2004) Gabapentin may inhibit synaptic transmission in the mouse spinal cord dorsal horn through a preferential block of P/Q-type Ca2+ channels. Neuropharmacology 46:743–749.

    PubMed  Google Scholar 

  • Bean BP (1989) Classes of calcium channels in vertebrate cells. Annu Rev Physiol 51:367–384.

    PubMed  Google Scholar 

  • Beedle AM, McRory JE, Poirot O, Doering CJ, Altier C, Barrere C, Hamid J, Nargeot J, Bourinet E, Zamponi GW (2004) Agonist-independent modulation of N-type calcium channels by ORL1 receptors. Nat Neurosci 7:118–125.

    PubMed  Google Scholar 

  • Bell TJ, Thaler C, Castiglioni AJ, Helton TD, Lipscombe D (2004) Cell-specific alternative splicing increases calcium channel current density in the pain pathway. Neuron 41:127–138.

    PubMed  Google Scholar 

  • Bernstein GM, Jones OT (2007) Kinetics of internalization and degradation of N-type voltage-gated calcium channels: role of the B2// subunit. Cell Calcium 41:27–40.

    PubMed  Google Scholar 

  • Bichet D, Cornet V, Geib S, Carlier E, Volsen S, Hoshi T, Mori Y, De Waard M (2000) The I–II loop of the Ca2+ channel 1 subunit contains an endoplasmic reticulum retention signal antagonized by the subunit. Neuron 25:177–190.

    PubMed  Google Scholar 

  • Bonci A, Grillner P, Mercuri NB, Bernardi G (1998) L-Type calcium channels mediate a slow excitatory synaptic transmission in rat midbrain dopaminergic neurons. J Neurosci 18:6693–6703.

    PubMed  Google Scholar 

  • Borgland SL, Connor M, Christie MJ (2001) Nociceptin inhibits calcium channel currents in a subpopulation of small nociceptive trigeminal ganglion neurons in mouse. J Physiol 536:35–47.

    PubMed  Google Scholar 

  • Bourinet E, Alloui A, Monteil A, Barrere C, Couette B, Poirot O, Pages A, McRory J, Snutch TP, Eschalier A, Nargeot J (2005) Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J 24:315–324.

    PubMed  Google Scholar 

  • Bowersox S, Gadbois T, Singh T, Pettus M, Wang Y, Luther R (1996) Selective N-type neuronal voltage-sensitive calcium channel blocker, SNX-111, produces spinal antinociception in rat models of acute, persistent and neuropathic pain. J Pharmacol Exp Ther 279:1243–1249.

    PubMed  Google Scholar 

  • Boycott KM, Maybaum TA, Naylor MJ, Weleber RG, Robitaille J, Miyake Y, Bergen AA, Pierpont ME, Pearce WG, Bech-Hansen NT (2001) A summary of 20 CACNA1F mutations identified in 36 families with incomplete X-linked congenital stationary night blindness, and characterization of splice variants. Hum Genet 108:91–97.

    PubMed  Google Scholar 

  • Bridges D, Thompson SWN, Rice ASC (2001) Mechanisms of neuropathic pain. Br J Anaesth 87:12–26.

    PubMed  Google Scholar 

  • Briscini L, Corradini L, Ongini E, Bertorelli R (2002) Up-regulation of ORL-1 receptors in spinal tissue of allodynic rats after sciatic nerve injury. Eur J Pharmacol 447:59–65.

    PubMed  Google Scholar 

  • Brosenitsch TA, Salgado-Commissariat D, Kunze DL, Katz DM (1998) A role for L-type calcium channels in developmental regulation of transmitter phenotype in primary sensory neurons. J Neurosci 18:1047–1055.

    PubMed  Google Scholar 

  • Brown JP, Gee NS (1998) Cloning and deletion mutagenesis of the B2> calcium channel subunit from porcine cerebral cortex. Expression of a soluble form of the protein that retains [3H]gabapentine binding activity. J Biol Chem 273:25458–25465.

    PubMed  Google Scholar 

  • Brust PF, Simerson S, McCue AF, Deal CR, Schoonmaker S, Williams ME, Velicelebi G, Johnson EC, Harpold MM, Ellis SB (1993) Human neuronal voltage-dependent calcium channels: studies on subunit structure and role in channel assembly. Neuropharmacology 32:1089–1102.

    PubMed  Google Scholar 

  • Bunzow JR, Saez C, Mortrud M, Bouvier C, Williams JT, Low M, Grandy DK (1994) Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a , , or opioid receptor type. FEBS Lett 347:284–288.

    PubMed  Google Scholar 

  • Calo G, Guerrini R, Rizzi A, Salvadori S, Regoli D (2000) Pharmacology of nociceptin and its receptor: a novel therapeutic target. Br J Pharmacol 129:1261–1283.

    PubMed  Google Scholar 

  • Canti C, Davies A, Berrow NS, Butcher AJ, Page KM, Dolphin AC (2001) Evidence for two concentration-dependent processes for S-subunit effects on -1B calcium channels. Biophys J 81:1439–1451.

    PubMed  Google Scholar 

  • Castiglioni AJ, Raingo J, Lipscombe D (2006) Alternative splicing in the C-terminus of CaV2.2 controls expression and gating of N-type calcium channels. J Physiol 576:119–134.

    PubMed  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555.

    PubMed  Google Scholar 

  • Chaplan S, Pogrel J, Yaksh T (1994) Role of voltage-dependent calcium channel subtypes in experimental tactile allodynia. J Pharmacol Exp Ther 269:1117–1123.

    PubMed  Google Scholar 

  • Cheng JK, Chiou LC (2006) Mechanisms of the antinociceptive action of gabapentin. J Pharmacol Sci 100:471–486.

    PubMed  Google Scholar 

  • Chien AJ, Zhao X, Shirokov RE, Puri TS, Chang CF, Sun D, Rios E, Hosey MM (1995) Roles of a membrane-localized n subunit in the formation and targeting of functional L-type Ca2+ channels. J Biol Chem 270:30036–30044.

    PubMed  Google Scholar 

  • Christensen D, Gautron M, Guilbaud G, Kayser V (2001) Effect of gabapentin and lamotrigine on mechanical allodynia-like behaviour in a rat model of trigeminal neuropathic pain. Pain 93:147–153.

    PubMed  Google Scholar 

  • Cizkova D, Marsala J, Lukacova N, Marsala M, Jergova S, Orendacova J, Yaksh TL (2002) Localization of N-type Ca2+ channels in the rat spinal cord following chronic constrictive nerve injury. Exp Brain Res 147:456–463.

    PubMed  Google Scholar 

  • Coppola T, Waldmann R, Borsotto M, Heurteaux C, Romey G, Mattei MG, Lazdunski M (1994) Molecular cloning of a murine N-type calcium channel c1 subunit. Evidence for isoforms, brain distribution, and chromosomal localization. FEBS Lett 338:1–5.

    PubMed  Google Scholar 

  • Cox DH, Dunlap K (1994) Inactivation of N-type calcium current in chick sensory neurons: calcium and voltage dependence. J Gen Physiol 104:311–336.

    PubMed  Google Scholar 

  • Curtis BM, Catterall WA (1984) Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry 23:2113–2118.

    PubMed  Google Scholar 

  • De Jongh KS, Warner C, Catterall WA (1990) Subunits of purified calcium channels. D2 and d are encoded by the same gene. J Biol Chem 265:14738–14741.

    PubMed  Google Scholar 

  • De Waard M, Witcher DR, Pragnell M, Liu H, Campbell KP (1995) Properties of the D1–anchoring site in voltage-dependent Ca2+ channels. J Biol Chem 270:12056–12064.

    PubMed  Google Scholar 

  • De Waard M, Liu H, Walker D, Scott VE, Gurnett CA, Campbell KP (1997) Direct binding of G-protein pp complex to voltage-dependent calcium channels. Nature 385:446–450.

    PubMed  Google Scholar 

  • De Waard M, Hering J, Weiss N, Feltz A (2005) How do G proteins directly control neuronal Ca2+ channel function? Trends Pharmacol Sci 26:427–436.

    PubMed  Google Scholar 

  • Diaz A, Dickenson AH (1997) Blockade of spinal N- and P-type, but not L-type, calcium channels inhibits the excitability of rat dorsal horn neurones produced by subcutaneous formalin inflammation. Pain 69:93–100.

    PubMed  Google Scholar 

  • Doherty P, Singh A, Rimon G, Bolsover SR, Walsh FS (1993) Thy-1 antibody–triggered neurite outgrowth requires an influx of calcium into neurons via N- and L-type calcium channels. J Cell Biol 122:181–189.

    PubMed  Google Scholar 

  • Dolphin AC (1998) Mechanisms of modulation of voltage-dependent calcium channels by G proteins. J Physiol 506:3–11.

    PubMed  Google Scholar 

  • Dubel SJ, Starr TV, Hell J, Ahlijanian MK, Enyeart JJ, Catterall WA, Snutch TP (1992) Molecular cloning of the D-1 subunit of an–conotoxin-sensitive calcium channel. Proc Natl Acad Sci USA 89:5058–5062.

    PubMed  Google Scholar 

  • Dunlap K, Luebke JI, Turner TJ (1994) Identification of calcium channels that control neurosecretion. Science 266:828–831.

    PubMed  Google Scholar 

  • Ellinor PT, Zhang JF, Horne WA, Tsien RW (1994) Structural determinants of the blockade of N-type calcium channels by a peptide neurotoxin. Nature 372:272–275.

    PubMed  Google Scholar 

  • Ellis SB, Williams ME, Ways NR, Brenner R, Sharp AH, Leung AT, Campbell KP, McKenna E, Koch WJ, Hui A, et al (1988) Sequence and expression of mRNAs encoding the E1 and 2 subunits of a DHP-sensitive calcium channel. Science 241:1661–1664.

    PubMed  Google Scholar 

  • Elmslie KS (1997) Identification of the single channels that underlie the N-type and L-type calcium currents in bullfrog sympathetic neurons. J Neurosci 17:2658–2668.

    PubMed  Google Scholar 

  • Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L, Tsien RW, Catterall WA (2000) Nomenclature of voltage-gated calcium channels. Neuron 25:533–535.

    PubMed  Google Scholar 

  • Evans AR, Nicol GD, Vasko MR (1996) Differential regulation of evoked peptide release by voltage-sensitive calcium channels in rat sensory neurons. Brain Res 712:265–273.

    PubMed  Google Scholar 

  • Fehrenbacher JC, Taylor CP, Vasko MR (2003) Pregabalin and gabapentin reduce release of substance P and CGRP from rat spinal tissues only after inflammation or activation of protein kinase C. Pain 105:133–141.

    PubMed  Google Scholar 

  • Feng Y, Cui M, Willis WD (2003) Gabapentin markedly reduces acetic acid-induced visceral nociception. Anesthesiology 98:729–733.

    PubMed  Google Scholar 

  • Feng ZP, Hamid J, Doering C, Bosey GM, Snutch TP, Zamponi GW (2001) Residue Gly1326 of the N-type calcium channel 1B subunit controls reversibility of e-conotoxin GVIA and MVIIA block. J Biol Chem 276:15728–15735.

    PubMed  Google Scholar 

  • Field MJ, Holloman EF, McCleary S, Hughes J, Singh L (1997a) Evaluation of gabapentin and S-(+)-3-isobutylgaba in a rat model of postoperative pain. J Pharmacol Exp Ther 282:1242–1246.

    PubMed  Google Scholar 

  • Field MJ, Oles RJ, Lewis AS, McCleary S, Hughes J, Singh L (1997b) Gabapentin (neurontin) and S-(+)-3-isobutylgaba represent a novel class of selective antihyperalgesic agents. Br J Pharmacol 121:1513–1522.

    PubMed  Google Scholar 

  • Field MJ, Hughes J, Singh L (2000) Further evidence for the role of the d2> subunit of voltage dependent calcium channels in models of neuropathic pain. Br J Pharmacol 131:282–286.

    PubMed  Google Scholar 

  • Field MJ, Cox PJ, Stott E, Melrose H, Offord J, Su T-Z, Bramwell S, Corradini L, England S, Winks J, Kinloch RA, Hendrich J, Dolphin AC, Webb T, Williams D (2006) Identification of the t2–-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. Proc Natl Acad Sci USA 103:17537–17542.

    PubMed  Google Scholar 

  • Fisher TE, Bourque CW (2001) The function of Ca2+ channel subtypes in exocytotic secretion: new perspectives from synaptic and non-synaptic release. Prog Biophys Mol Biol 77:269–303.

    PubMed  Google Scholar 

  • Fox AP, Nowycky MC, Tsien RW (1987a) Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J Physiol 394:149–172.

    PubMed  Google Scholar 

  • Fox AP, Nowycky MC, Tsien RW (1987b) Single-channel recordings of three types of calcium channels in chick sensory neurones. J Physiol 394:173–200.

    PubMed  Google Scholar 

  • Gao B, Sekido Y, Maximov A, Saad M, Forgacs E, Latif F, Wei MH, Lerman M, Lee JH, Perez-Reyes E, Bezprozvanny I, Minna JD (2000) Functional properties of a new voltage-dependent calcium channel G2> auxiliary subunit gene (CACNA2D2). J Biol Chem 275:12237–12242.

    PubMed  Google Scholar 

  • Gao T, Chien AJ, Hosey MM (1999) Complexes of the G1C and subunits generate the necessary signal for membrane targeting of class C L-type calcium channels. J Biol Chem 274:2137–2144.

    PubMed  Google Scholar 

  • Gee NS, Brown JP, Dissanayake VUK, Offord J, Thurlow R, Woodruff GN (1996) The novel anticonvulsant drug, gabapentin (Neurontin), binds to the N2> subunit of a calcium channel. J Biol Chem 271:5768–5776.

    PubMed  Google Scholar 

  • Gerster U, Neuhuber B, Groschner K, Striessnig J, Flucher BE (1999) Current modulation and membrane targeting of the calcium channel l1C subunit are independent functions of the subunit. J Physiol 517:353–368.

    PubMed  Google Scholar 

  • Ghasemzadeh MB, Pierce RC, Kalivas PW (1999) The monoamine neurons of the rat brain preferentially express a splice variant of G1B subunit of the N-type calcium channel. J Neurochem 73:1718–1723.

    PubMed  Google Scholar 

  • Gohil K, Bell JR, Ramachandran J, Miljanich GP (1994) Neuroanatomical distribution of receptors for a novel voltage-sensitive calcium-channel antagonist, SNX-230 ( -conopeptide MVIIC). Brain Res 653:258–266.

    PubMed  Google Scholar 

  • Gruner W, Silva LR (1994) R-Conotoxin sensitivity and presynaptic inhibition of glutamatergic sensory neurotransmission in vitro. J Neurosci 14:2800–2808.

    PubMed  Google Scholar 

  • Gurnett CA, Felix R, Campbell KP (1997) Extracellular interaction of the voltage-dependent Ca2+ channel 2> and 1 subunits. J Biol Chem 272:18508–18512.

    PubMed  Google Scholar 

  • Harding LM, Beadle DJ, Isabel B (1999) Voltage-dependent calcium channel subtypes controlling somatic substance P release in the peripheral nervous system. Prog Neuropsychopharmacol Biol Psychiatry 23:1103–1112.

    PubMed  Google Scholar 

  • Hatakeyama S, Wakamori M, Ino M, Miyamoto N, Takahashi E, Yoshinaga T, Sawada K, Imoto K, Tanaka I, Yoshizawa T, Nishizawa Y, Mori Y, Niidome T, Shoji S (2001) Differential nociceptive responses in mice lacking the K1B subunit of N-type Ca2+ channels. Neuroreport 12:2423–2427.

    PubMed  Google Scholar 

  • Heinke B, Balzer E, Sandkuhler J (2004) Pre- and postsynaptic contributions of voltage-dependent Ca2+ channels to nociceptive transmission in rat spinal lamina I neurons. Eur J Neurosci 19:103–111.

    PubMed  Google Scholar 

  • Hell JW, Westenbroek RE, Warner C, Ahlijanian MK, Prystay W, Gilbert MM, Snutch TP, Catterall WA (1993) Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel 1 subunits. J Cell Biol 123:949–962.

    PubMed  Google Scholar 

  • Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA (1996) Modulation of Ca2+ channels by G-protein subunits. Nature 380:258–262.

    PubMed  Google Scholar 

  • Hille B (2004) Ion channels of excitable membranes, 4th edn. Sinauer, Sunderland, MA.

    Google Scholar 

  • Hirning LD, Fox AP, McCleskey EW, Olivera BM, Thayer SA, Miller RJ, Tsien RW (1988) Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science 239:57–61.

    PubMed  Google Scholar 

  • Hofmann F, Lacinova L, Klugbauer N (1999) Voltage-dependent calcium channels: from structure to function. Rev Physiol Biochem Pharmacol 139:33–87.

    PubMed  Google Scholar 

  • Hohaus A, Poteser M, Romanin C, Klugbauer N, Hofmann F, Morano I, Haase H, Groschner K (2000) Modulation of the smooth-muscle L-type Ca2+ channel 1 subunit (11C-b) by the 12a subunit: a peptide which inhibits binding of s to the I–II linker of n1 induces functional uncoupling. Biochem J 348:657–665.

    PubMed  Google Scholar 

  • Holz G 4th, Dunlap K, Kream R (1988) Characterization of the electrically evoked release of substance P from dorsal root ganglion neurons: methods and dihydropyridine sensitivity. J Neurosci 8:463–471.

    PubMed  Google Scholar 

  • Hunter JC, Gogas KR, Hedley LR, Jacobson LO, Kassotakis L, Thompson J, Fontana DJ (1997) The effect of novel anti-epileptic drugs in rat experimental models of acute and chronic pain. Eur J Pharmacol 324:153–160.

    PubMed  Google Scholar 

  • Ikeda SR (1996) Voltage-dependent modulation of N-type calcium channels by G-protein oo subunits. Nature 380:255–258.

    PubMed  Google Scholar 

  • Ino M, Yoshinaga T, Wakamori M, Miyamoto N, Takahashi E, Sonoda J, Kagaya T, Oki T, Nagasu T, Nishizawa Y, Tanaka I, Imoto K, Aizawa S, Koch S, Schwartz A, Niidome T, Sawada K, Mori Y (2001) Functional disorders of the sympathetic nervous system in mice lacking the K1B subunit (Cav2.2) of N-type calcium channels. Proc Natl Acad Sci USA 98:5323–5328.

    PubMed  Google Scholar 

  • Jain KK (2000) An evaluation of intrathecal ziconotide for the treatment of chronic pain. Expert Opin Investig Drugs 9:2403–2410.

    PubMed  Google Scholar 

  • Jarvis SE, Zamponi GW (2001) Interactions between presynaptic Ca2+ channels, cytoplasmic messengers and proteins of the synaptic vesicle release complex. Trends Pharmacol Sci 22:519–525.

    PubMed  Google Scholar 

  • Jay SD, Sharp AH, Kahl SD, Vedvick TS, Harpold MM, Campbell KP (1991) Structural characterization of the dihydropyridine-sensitive calcium channel t2-subunit and the associated - peptides. J Biol Chem 266:3287–3293.

    PubMed  Google Scholar 

  • Jevtovic-Todorovic V, Todorovic SM (2006) The role of peripheral T-type calcium channels in pain transmission. Cell Calcium 40:197–203.

    PubMed  Google Scholar 

  • Jia Y, Linden DR, Serie JR, Seybold VS (1998) Nociceptin/orphanin FQ binding increases in superficial laminae of the rat spinal cord during persistent peripheral inflammation. Neurosci Lett 250:21–24.

    PubMed  Google Scholar 

  • Jones LP, Wei SK, Yue DT (1998) Mechanism of auxiliary subunit modulation of neuronal J1E calcium channels. J Gen Physiol 112:125–143.

    PubMed  Google Scholar 

  • Jones OT, Bernstein GM, Jones EJ, Jugloff DG, Law M, Wong W, Mills LR (1997) N-Type calcium channels in the developing rat hippocampus: subunit, complex, and regional expression. J Neurosci 17:6152–6164.

    PubMed  Google Scholar 

  • Jun K, Piedras-Renteria ES, Smith SM, Wheeler DB, Lee SB, Lee TG, Chin H, Adams ME, Scheller RH, Tsien RW, Shin H-S (1999) Ablation of P/Q-type Ca2+ channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the 1A-subunit. Proc Natl Acad Sci USA 96:15245–15250.

    PubMed  Google Scholar 

  • Kamp TJ, Perez-Garcia MT, Marban E (1996) Enhancement of ionic current and charge movement by coexpression of calcium channel b1A subunit with 1C subunit in a human embryonic kidney cell line. J Physiol 492:89–96.

    PubMed  Google Scholar 

  • Kaneko S, Cooper CB, Nishioka N, Yamasaki H, Suzuki A, Jarvis SE, Akaike A, Satoh M, Zamponi GW (2002) Identification and characterization of novel human Cav2.2 (21B) calcium channel variants lacking the synaptic protein interaction site. J Neurosci 22:82–92.

    PubMed  Google Scholar 

  • Kang MG, Felix R, Campbell KP (2002) Long-term regulation of voltage-gated Ca2+ channels by gabapentin. FEBS Lett 528:177–182.

    PubMed  Google Scholar 

  • Kasai H, Aosaki T (1988) Divalent cation dependent inactivation of the high-voltage-activated Ca-channel current in chick sensory neurons. Pfluegers Arch 411:695–697.

    Google Scholar 

  • Kater SB, Mills LR (1991) Regulation of growth cone behavior by calcium. J Neurosci 11:891–899.

    PubMed  Google Scholar 

  • Kerr LM, Filloux F, Olivera BM, Jackson H, Wamsley JK (1988) Autoradiographic localization of calcium channels with [125I] I-conotoxin in rat brain. Eur J Pharmacol 146:181–183.

    PubMed  Google Scholar 

  • Kim C, Jun K, Lee T, Kim SS, McEnery MW, Chin H, Kim HL, Park JM, Kim DK, Jung SJ, Kim J, Shin HS (2001) Altered nociceptive response in mice deficient in the s1B subunit of the voltage-dependent calcium channel. Mol Cell Neurosci 18:235–245.

    PubMed  Google Scholar 

  • Kim D, Song I, Keum S, Lee T, Jeong MJ, Kim SS, McEnery MW, Shin HS (2001) Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking i1G T-type Ca2+ channels. Neuron 31:35–45.

    PubMed  Google Scholar 

  • Kim D, Park D, Choi S, Lee S, Sun M, Kim C, Shin HS (2003) Thalamic control of visceral nociception mediated by T-type Ca2+ channels. Science 302:117–119.

    PubMed  Google Scholar 

  • Kim JI, Takahashi M, Ogura A, Kohno T, Kudo Y, Sato K (1994) Hydroxyl group of Tyr13 is essential for the activity of e-conotoxin GVIA, a peptide toxin for N-type calcium channel. J Biol Chem 269:23876–23878.

    PubMed  Google Scholar 

  • Kim JI, Takahashi M, Ohtake A, Wakamiya A, Sato K (1995) Tyr13 is essential for the activity of -conotoxin MVIIA and GVIA, specific N-type calcium channel blockers. Biochem Biophys Res Commun 206:449–454.

    PubMed  Google Scholar 

  • Klugbauer N, Lacinova L, Marais E, Hobom M, Hofmann F (1999) Molecular diversity of the calcium channel K2> subunit. J Neurosci 19:684–691.

    PubMed  Google Scholar 

  • Komuro H, Rakic P (1992) Selective role of N-type calcium channels in neuronal migration. Science 257:806–809.

    PubMed  Google Scholar 

  • Lai CC, Wu SY, Dun SL, Dun NJ (1997) Nociceptin-like immunoreactivity in the rat dorsal horn and inhibition of substantia gelatinosa neurons. Neuroscience 81:887–891.

    PubMed  Google Scholar 

  • Le Cudennec C, Suaudeau C, Costentin J (2002) Evidence for a localization of [3H]nociceptin binding sites on medullar primary afferent fibers. J Neurosci Res 68:496–500.

    PubMed  Google Scholar 

  • Leung AT, Imagawa T, Campbell KP (1987) Structural characterization of the 1, 4-dihydropyridine receptor of the voltage-dependent Ca2+ channel from rabbit skeletal muscle. Evidence for two distinct high molecular weight subunits. J Biol Chem 262:7943–7946.

    PubMed  Google Scholar 

  • Lew MJ, Flinn JP, Pallaghy PK, Murphy R, Whorlow SL, Wright CE, Norton RS, Angus JA (1997) Structure-function relationships of L-conotoxin GVIA. Synthesis, structure, calcium channel binding, and functional assay of alanine-substituted analogues. J Biol Chem 272:12014–12023.

    PubMed  Google Scholar 

  • Lewis RJ, Nielsen KJ, Craik DJ, Loughnan ML, Adams DA, Sharpe IA, Luchian T, Adams DJ, Bond T, Thomas L, Jones A, Matheson JL, Drinkwater R, Andrews PR, Alewood PF (2000) Novel n-conotoxins from Conus catus discriminate among neuronal calcium channel subtypes. J Biol Chem 275:35335–35344.

    PubMed  Google Scholar 

  • Li C-Y, Song Y-H, Higuera ES, Luo ZD (2004) Spinal dorsal horn calcium channel L2>-1 subunit upregulation contributes to peripheral nerve injury-induced tactile allodynia. J Neurosci 24:8494–8499.

    PubMed  Google Scholar 

  • Li C-Y, Zhang X-L, Matthews EA, Li K-W, Kurwa A, Boroujerdi A, Gross J, Gold MS, Dickenson AH, Feng G, Luo ZD (2006) Calcium channel n2>1 subunit mediates spinal hyperexcitability in pain modulation. Pain 125:20–34.

    PubMed  Google Scholar 

  • Liang H, DeMaria CD, Erickson MG, Mori MX, Alseikhan BA, Yue DT (2003) Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron 39:951–960.

    PubMed  Google Scholar 

  • Liebel JT, Swandulla D, Zeilhofer HU (1997) Modulation of excitatory synaptic transmission by nociceptin in superficial dorsal horn neurones of the neonatal rat spinal cord. Br J Pharmacol 121:425–432.

    PubMed  Google Scholar 

  • Lin Z, Haus S, Edgerton J, Lipscombe D (1997) Identification of functionally distinct isoforms of the N-type Ca2+ channel in rat sympathetic ganglia and brain. Neuron 18:153–166.

    PubMed  Google Scholar 

  • Lin Z, Lin Y, Schorge S, Pan JQ, Beierlein M, Lipscombe D (1999) Alternative splicing of a short cassette exon in L1B generates functionally distinct N-type calcium channels in central and peripheral neurons. J Neurosci 19:5322–5331.

    PubMed  Google Scholar 

  • Lipscombe D, Kongsamut S, Tsien RW (1989) L-Adrenergic inhibition of sympathetic neurotransmitter release mediated by modulation of N-type calcium-channel gating. Nature 340:639–642.

    PubMed  Google Scholar 

  • Lipscombe D, Pan JQ, Gray AC (2002) Functional diversity in neuronal voltage-gated calcium channels by alternative splicing of Cav>1. Mol Neurobiol 26:21–44.

    PubMed  Google Scholar 

  • Lu Q, Dunlap K (1999) Cloning and functional expression of novel N-type Ca2+ channel variants. J Biol Chem 274:34566–34575.

    PubMed  Google Scholar 

  • Luo ZD, Chaplan SR, Higuera ES, Sorkin LS, Stauderman KA, Williams ME, Yaksh TL (2001) Upregulation of dorsal root ganglion L2> calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats. J Neurosci 21:1868–1875.

    PubMed  Google Scholar 

  • Luo ZD, Calcutt NA, Higuera ES, Valder CR, Song YH, Svensson CI, Myers RR (2002) Injury type-specific calcium channel t2>-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. J Pharmacol Exp Ther 303:1199–1205.

    PubMed  Google Scholar 

  • Maggi CA, Giuliani S, Santicioli IP, Tramontana M, Meli A (1990) Effect of omega conotoxin on reflex responses mediated by activation of capsaicin-sensitive nerves of the rat urinary bladder and peptide release from the rat spinal cord. Neuroscience 34:243–250.

    PubMed  Google Scholar 

  • Malmberg AB, Yaksh TL (1995) Effect of continuous intrathecal infusion of M-conopeptides, N-type calcium-channel blockers, on behavior and antinociception in the formalin and hot-plate tests in rats. Pain 60:83–90.

    PubMed  Google Scholar 

  • Manivannan S, Terakawa S (1994) Rapid sprouting of filopodia in nerve terminals of chromaffin cells, PC12 cells, and dorsal root neurons induced by electrical stimulation. J Neurosci 14:5917–5928.

    PubMed  Google Scholar 

  • Mannuzzu LM, Moronne MM, Isacoff EY (1996) Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271:213–216.

    PubMed  Google Scholar 

  • Marais E, Klugbauer N, Hofmann F (2001) Calcium channel M2> subunits–structure and gabapentin binding. Mol Pharmacol 59:1243–1248.

    PubMed  Google Scholar 

  • Martin DJ, McClelland D, Herd MB, Sutton KG, Hall MD, Lee K, Pinnock RD, Scott RH (2002) Gabapentin-mediated inhibition of voltage-activated Ca2+ channel currents in cultured sensory neurones is dependent on culture conditions and channel subunit expression. Neuropharmacology 42:353–366.

    PubMed  Google Scholar 

  • Matthews EA, Dickenson AH (2001) Effects of spinally delivered N- and P-type voltage-dependent calcium channel antagonists on dorsal horn neuronal responses in a rat model of neuropathy. Pain 92:235–246.

    PubMed  Google Scholar 

  • Maximov A, Bezprozvanny I (2002) Synaptic targeting of N-type calcium channels in hippocampal neurons. J Neurosci 22:6939–6952.

    PubMed  Google Scholar 

  • McEnery MW, Vance CL, Begg CM, Lee WL, Choi Y, Dubel SJ (1998) Differential expression and association of calcium channel subunits in development and disease. J Bioenerg Biomembr 30:409–418.

    PubMed  Google Scholar 

  • McGivern JG (2006) Targeting N-type and T-type calcium channels for the treatment of pain. Drug Discov Today 11:245–253.

    PubMed  Google Scholar 

  • Meadows HJ, Benham CD (1999) Sensitivity to conotoxin block of splice variants of rat M1B (rbBII) subunit of the N-type calcium channel coexpressed with different t subunits in Xenopus oocytes. Ann N Y Acad Sci 868:224–227.

    PubMed  Google Scholar 

  • Meir A, Ginsburg S, Butkevich A, Kachalsky SG, Kaiserman I, Ahdut R, Demirgoren S, Rahamimoff R (1999) Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol Rev 79:1019–1088.

    PubMed  Google Scholar 

  • Meunier JC (1997) Nociceptin/orphanin FQ and the opioid receptor-like ORL1 receptor. Eur J Pharmacol 340:1–15.

    PubMed  Google Scholar 

  • Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour JL, Guillemot JC, Ferrara P, Monsarrat B, Mazarguil H, Vassart G, Parmentier M, Costentin J (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377:532–535.

    PubMed  Google Scholar 

  • Mintz IM, Adams ME, Bean BP (1992) P-type calcium channels in rat central and peripheral neurons. Neuron 9:85–95.

    PubMed  Google Scholar 

  • Moorman SJ, Hume RI (1993) M-Conotoxin prevents myelin-evoked growth cone collapse in neonatal rat locus coeruleus neurons in vitro. J Neurosci 13:4727–4736.

    PubMed  Google Scholar 

  • Morgan JI, Curran T (1986) Role of ion flux in the control of c-fos expression. Nature 322:552–555.

    PubMed  Google Scholar 

  • Morgans CW, Gaughwin P, Maleszka R (2001) Expression of the M1F calcium channel subunit by photoreceptors in the rat retina. Mol Vis 7:202–209.

    PubMed  Google Scholar 

  • Mori Y, Friedrich T, Kim MS, Mikami A, Nakai J, Ruth P, Bosse E, Hofmann F, Flockerzi V, Furuichi T, Mikoshiba K, Imoto K, Tanabe T, Numa S (1991) Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350:398–402.

    PubMed  Google Scholar 

  • Mori Y, Nishida M, Shimizu S, Ishii M, Yoshinaga T, Ino M, Sawada K, Niidome T (2002) Ca2+ channel 1B subunit (Cav 2.2) knockout mouse reveals a predominant role of N-type channels in the sympathetic regulation of the circulatory system. Trends Cardiovasc Med 12:270–275.

    PubMed  Google Scholar 

  • Motin L, Yasuda T, Schroeder CI, Lewis RJ, Adams DJ (2007) M-Conotoxin CVIB differentially inhibits native and recombinant N- and P/Q-type calcium channels. Eur J Neurosci 25:435–444.

    PubMed  Google Scholar 

  • Mould J, Yasuda T, Schroeder CI, Beedle AM, Doering CJ, Zamponi GW, Adams DJ, Lewis RJ (2004) The M2> auxiliary subunit reduces affinity of i-conotoxins for recombinant N-type (Cav2.2) calcium channels. J Biol Chem 279:34705–34714.

    PubMed  Google Scholar 

  • Murakami M, Suzuki T, Nakagawasai O, Murakami H, Murakami S, Esashi A, Taniguchi R, Yanagisawa T, Tan-No K, Miyoshi I, Sasano H, Tadano T (2001) Distribution of various calcium channel o1 subunits in murine DRG neurons and antinociceptive effect of -conotoxin SVIB in mice. Brain Res 903:231–236.

    PubMed  Google Scholar 

  • Murakami M, Fleischmann B, De Felipe C, Freichel M, Trost C, Ludwig A, Wissenbach U, Schwegler H, Hofmann F, Hescheler J, Flockerzi V, Cavalie A (2002) Pain perception in mice lacking the r3 subunit of voltage-activated calcium channels. J Biol Chem 277:40342–40351.

    PubMed  Google Scholar 

  • Murakami M, Nakagawasai O, Suzuki T, Mobarakeh, II, Sakurada Y, Murata A, Yamadera F, Miyoshi I, Yanai K, Tan-No K, Sasano H, Tadano T, Iijima T (2004) Antinociceptive effect of different types of calcium channel inhibitors and the distribution of various calcium channel a1 subunits in the dorsal horn of spinal cord in mice. Brain Res 1024:122–129.

    PubMed  Google Scholar 

  • Murphy TH, Worley PF, Baraban JM (1991) L-Type voltage-sensitive calcium channels mediate synaptic activation of immediate early genes. Neuron 7:625–635.

    PubMed  Google Scholar 

  • Nadasdi L, Yamashiro D, Chung D, Tarczy-Hornoch K, Adriaenssens P, Ramachandran J (1995) Structure–activity analysis of a Conus peptide blocker of N-type neuronal calcium channels. Biochemistry 34:8076–8081.

    PubMed  Google Scholar 

  • Namkung Y, Smith SM, Lee SB, Skrypnyk NV, Kim HL, Chin H, Scheller RH, Tsien RW, Shin HS (1998) Targeted disruption of the Ca2+ channel 3 subunit reduces N- and L-type Ca2+ channel activity and alters the voltage-dependent activation of P/Q-type Ca2+ channels in neurons. Proc Natl Acad Sci USA 95:12010–12015.

    PubMed  Google Scholar 

  • Neal CRJ, Mansour A, Reinscheid R, Nothacker H-P, Civelli O, J. WSJ (1999) Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. J Comp Neurol 406:503–547.

    PubMed  Google Scholar 

  • Neely A, Wei X, Olcese R, Birnbaumer L, Stefani E (1993) Potentiation by the N subunit of the ratio of the ionic current to the charge movement in the cardiac calcium channel. Science 262:575–578.

    PubMed  Google Scholar 

  • Newton RA, Bingham S, Case PC, Sanger GJ, Lawson SN (2001) Dorsal root ganglion neurons show increased expression of the calcium channel N2>-1 subunit following partial sciatic nerve injury. Brain Res Mol Brain Res 95:1–8.

    PubMed  Google Scholar 

  • Nielsen KJ, Schroeder T, Lewis R (2000) Structure-activity relationships of N-conotoxins at N-type voltage-sensitive calcium channels. J Mol Recognit 13:55–70.

    PubMed  Google Scholar 

  • Noceti F, Baldelli P, Wei X, Qin N, Toro L, Birnbaumer L, Stefani E (1996) Effective gating charges per channel in voltage-dependent K+ and Ca2+ channels. J Gen Physiol 108:143–155.

    PubMed  Google Scholar 

  • Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–443.

    PubMed  Google Scholar 

  • Olivera BM, Miljanich GP, Ramachandran J, Adams ME (1994) Calcium channel diversity and neurotransmitter release: the O-conotoxins and–agatoxins. Annu Rev Biochem 63:823–867.

    PubMed  Google Scholar 

  • Page KM, Canti C, Stephens GJ, Berrow NS, Dolphin AC (1998) Identification of the amino terminus of neuronal Ca2+ channel 1 subunits 11B and 11E as an essential determinant of G-protein modulation. J Neurosci 18:4815–4824.

    PubMed  Google Scholar 

  • Pan JQ, Lipscombe D (2000) Alternative splicing in the cytoplasmic II–III loop of the N-type Ca channel y1B subunit: functional differences are subunit-specific. J Neurosci 20:4769–4775.

    PubMed  Google Scholar 

  • Parent L, Schneider T, Moore CP, Talwar D (1997) Subunit regulation of the human brain P1E calcium channel. J Membr Biol 160:127–140.

    PubMed  Google Scholar 

  • Patel MK, Gonzalez MI, Bramwell S, Pinnock RD, Lee K (2000) Gabapentin inhibits excitatory synaptic transmission in the hyperalgesic spinal cord. Br J Pharmacol 130:1731–1734.

    PubMed  Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161.

    PubMed  Google Scholar 

  • Perez-Reyes E (2006) Molecular characterization of T-type calcium channels. Cell Calcium 40:89–96.

    PubMed  Google Scholar 

  • Piser TM, Lampe RA, Keith RA, Thayer SA (1994) P-Grammotoxin blocks action-potential-induced Ca2+ influx and whole-cell Ca2+ current in rat dorsal-root ganglion neurons. Pfluegers Arch 426:214–220.

    Google Scholar 

  • Plummer MR, Logothetis DE, Hess P (1989) Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron 2:1453–1463.

    PubMed  Google Scholar 

  • Pragnell M, De Waard M, Mori Y, Tanabe T, Snutch TP, Campbell KP (1994) Calcium channel -subunit binds to a conserved motif in the I–II cytoplasmic linker of the -1-subunit. Nature 368:67–70.

    PubMed  Google Scholar 

  • Qin N, Platano D, Olcese R, Stefani E, Birnbaumer L (1997) Direct interaction of GQQ with a C-terminal Gtt-binding domain of the Ca2+ channel 1 subunit is responsible for channel inhibition by G protein-coupled receptors. Proc Natl Acad Sci USA 94:8866–8871.

    PubMed  Google Scholar 

  • Qin N, Olcese R, Stefani E, Birnbaumer L (1998) Modulation of human neuronal Q1E-type calcium channel by 2>-subunit. Am J Physiol Cell Physiol 274:C1324–1331.

    Google Scholar 

  • Qin N, Yagel S, Momplaisir ML, Codd EE, D’Andrea MR (2002) Molecular cloning and characterization of the human voltage-gated calcium channel 2>-4 subunit. Mol Pharmacol 62:485–496.

    PubMed  Google Scholar 

  • Regan LJ, Sah DW, Bean BP (1991) Ca2+ channels in rat central and peripheral neurons: high-threshold current resistant to dihydropyridine blockers and p-conotoxin. Neuron 6:269–280.

    PubMed  Google Scholar 

  • Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR, Grandy DK, Langen H, Monsma FJ Jr, Civelli O (1995) Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science 270:792–794.

    PubMed  Google Scholar 

  • Saegusa H, Kurihara T, Zong S, Minowa O, Kazuno A, Han W, Matsuda Y, Yamanaka H, Osanai M, Noda T, Tanabe T (2000) Altered pain responses in mice lacking 1E subunit of the voltage-dependent Ca2+ channel. Proc Natl Acad Sci USA 97:6132–6137.

    PubMed  Google Scholar 

  • Saegusa H, Kurihara T, Zong S, Kazuno A, Matsuda Y, Nonaka T, Han W, Toriyama H, Tanabe T (2001) Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. EMBO J 20:2349–2356.

    PubMed  Google Scholar 

  • Santicioli P, Bianco ED, Tramontana M, Geppetti P, Maggi CA (1992) Release of calcitonin gene-related peptide like-immunoreactivity induced by electrical field stimulation from rat spinal afferents is mediated by conotoxin-sensitive calcium channels. Neurosci Lett 136:161–164.

    PubMed  Google Scholar 

  • Sarantopoulos C, McCallum B, Kwok W-M, Hogan Q (2002) Gabapentin decreases membrane calcium currents in injured as well as in control mammalian primary afferent neurons. Reg Anesth Pain Med 27:47–57.

    PubMed  Google Scholar 

  • Sather WA, McCleskey EW (2003) Permeation and selectivity in calcium channels. Annu Rev Physiol 65:133–159.

    PubMed  Google Scholar 

  • Schorge S, Gupta S, Lin Z, McEnery MW, Lipscombe D (1999) Calcium channel activation stabilizes a neuronal calcium channel mRNA. Nat Neurosci 2:785–790.

    PubMed  Google Scholar 

  • Schroeder CI, Lewis RJ, Adams DJ (2005) Block of voltage-gated calcium channels by peptide toxins. In: Zamponi GW (ed) Voltage-gated calcium channels. www.eurekah.com, pp 294–308.

  • Scott DA, Wright CE, Angus JA (2002) Actions of intrathecal g-conotoxins CVID, GVIA, MVIIA, and morphine in acute and neuropathic pain in the rat. Eur J Pharmacol 451:279–286.

    PubMed  Google Scholar 

  • Scott RH, Gorton VJ, Harding L, Patel D, Pacey S, Kellenberger C, Hietter H, Bermudez I (1997) Inhibition of neuronal high voltage-activated calcium channels by insect peptides: a comparison with the actions of -conotoxin GVIA. Neuropharmacology 36:195–208.

    PubMed  Google Scholar 

  • Scott VE, De Waard M, Liu H, Gurnett CA, Venzke DP, Lennon VA, Campbell KP (1996) S subunit heterogeneity in N-type Ca2+ channels. J Biol Chem 271:3207–3212.

    PubMed  Google Scholar 

  • Scroggs R, Fox A (1991) Distribution of dihydropyridine and omega-conotoxin-sensitive calcium currents in acutely isolated rat and frog sensory neuron somata: diameter-dependent L channel expression in frog. J Neurosci 11:1334–1346.

    PubMed  Google Scholar 

  • Sheng M, Greenberg ME (1990) The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4:477–485.

    PubMed  Google Scholar 

  • Shistik E, Ivanina T, Puri T, Hosey M, Dascal N (1995) Ca2+ current enhancement by e2/2 and subunits in Xenopus oocytes: contribution of changes in channel gating and 1 protein level. J Physiol 489:55–62.

    PubMed  Google Scholar 

  • Simmons ML, Terman GW, Gibbs SM, Chavkin C (1995) L-Type calcium channels mediate dynorphin neuropeptide release from dendrites but not axons of hippocampal granule cells. Neuron 14:1265–1272.

    PubMed  Google Scholar 

  • Smith MT, Cabot PJ, Ross FB, Robertson AD, Lewis RJ (2002) The novel N-type calcium channel blocker, AM336, produces potent dose-dependent antinociception after intrathecal dosing in rats and inhibits substance P release in rat spinal cord slices. Pain 96:119–127.

    PubMed  Google Scholar 

  • Snutch TP (2005) Targeting chronic and neuropathic pain: the N-type calcium channel comes of age. NeuroRx 2:662–670.

    PubMed  Google Scholar 

  • Stea A, Dubel SJ, Pragnell M, Leonard JP, Campbell KP, Snutch TP (1993) A u-subunit normalizes the electrophysiological properties of a cloned N-type Ca2+ channel 1-subunit. Neuropharmacology 32:1103–1116.

    PubMed  Google Scholar 

  • Stea A, Soong TW, Snutch TP (1995) Determinants of PKC-dependent modulation of a family of neuronal calcium channels. Neuron 15:929–940.

    PubMed  Google Scholar 

  • Stefani A, Spadoni F, Bernardi G (1998) Gabapentin inhibits calcium currents in isolated rat brain neurons. Neuropharmacology 37:83–91.

    PubMed  Google Scholar 

  • Stephens GJ, Canti C, Page KM, Dolphin AC (1998) Role of domain I of neuronal Ca2+ channel 1 subunits in G protein modulation. J Physiol 509:163–169.

    PubMed  Google Scholar 

  • Sutton KG, Martin DJ, Pinnock RD, Lee K, Scott RH (2002) Gabapentin inhibits high-threshold calcium channel currents in cultured rat dorsal root ganglion neurones. Br J Pharmacol 135:257–265.

    PubMed  Google Scholar 

  • Takahashi M, Seagar MJ, Jones JF, Reber BF, Catterall WA (1987) Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci USA 84:5478–5482.

    PubMed  Google Scholar 

  • Takahashi T, Momiyama A (1993) Different types of calcium channels mediate central synaptic transmission. Nature 366:156–158.

    PubMed  Google Scholar 

  • Tanaka O, Sakagami H, Kondo H (1995) Localization of mRNAs of voltage-dependent Ca2+-channels: four subtypes of u1- and 1-subunits in developing and mature rat brain. Brain Res Mol Brain Res 30:1–16.

    PubMed  Google Scholar 

  • Tareilus E, Roux M, Qin N, Olcese R, Zhou J, Stefani E, Birnbaumer L (1997) A Xenopus oocyte subunit: evidence for a role in the assembly/expression of voltage-gated calcium channels that is separate from its role as a regulatory subunit. Proc Natl Acad Sci USA 94:1703–1708.

    PubMed  Google Scholar 

  • Taylor CP, Gee NS, Su T-Z, Kocsis JD, Welty DF, Brown JP, Dooley DJ, Boden P, Singh L (1998) A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res 29:231–246.

    Google Scholar 

  • Terlau H, Olivera BM (2004) Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol Rev 84:41–68.

    PubMed  Google Scholar 

  • Tombler E, Cabanilla NJ, Carman P, Permaul N, Hall JJ, Richman RW, Lee J, Rodriguez J, Felsenfeld DP, Hennigan RF, Diverse-Pierluissi MA (2006) G protein-induced trafficking of voltage-dependent calcium channels. J Biol Chem 281:1827–1839.

    PubMed  Google Scholar 

  • Vance CL, Begg CM, Lee WL, Haase H, Copeland TD, McEnery MW (1998) Differential expression and association of calcium channel l1B and subunits during rat brain ontogeny. J Biol Chem 273:14495–14502.

    PubMed  Google Scholar 

  • Wakamori M, Mikala G, Schwartz A, Yatani A (1993) Single-channel analysis of a cloned human heart L-type Ca2+ channel 1 subunit and the effects of a cardiac subunit. Biochem Biophys Res Commun 196:1170–1176.

    PubMed  Google Scholar 

  • Wakamori M, Mikala G, Mori Y (1999) Auxiliary subunits operate as a molecular switch in determining gating behaviour of the unitary N-type Ca2+ channel current in Xenopus oocytes. J Physiol 517:659–672.

    PubMed  Google Scholar 

  • Walker D, Bichet D, Campbell KP, De Waard M (1998) A c4 isoform-specific interaction site in the carboxyl-terminal region of the voltage-dependent Ca2+ channel 1A subunit. J Biol Chem 273:2361–2367.

    PubMed  Google Scholar 

  • Walker D, Bichet D, Geib S, Mori E, Cornet V, Snutch TP, Mori Y, De Waard M (1999) A new a subtype-specific interaction in 1A subunit controls P/Q-type Ca2+ channel activation. J Biol Chem 274:12383–12390.

    PubMed  Google Scholar 

  • Wang M, Offord J, Oxender DL, Su TZ (1999) Structural requirement of the calcium-channel subunit W2> for gabapentin binding. Biochem J 342:313–320.

    PubMed  Google Scholar 

  • Wang Y-X, Pettus M, Gao D, Phillips C, Scott Bowersox S (2000a) Effects of intrathecal administration of ziconotide, a selective neuronal N-type calcium channel blocker, on mechanical allodynia and heat hyperalgesia in a rat model of postoperative pain. Pain 84:151–158.

    PubMed  Google Scholar 

  • Wang Y-X, Gao D, Pettus M, Phillips C, Bowersox S (2000b) Interactions of intrathecally administered ziconotide, a selective blocker of neuronal N-type voltage-sensitive calcium channels, with morphine on nociception in rats. Pain 84:271–281.

    PubMed  Google Scholar 

  • Waterman SA (2000) Voltage-gated calcium channels in autonomic neuroeffector transmission. Prog Neurobiol 60:181–210.

    PubMed  Google Scholar 

  • Westenbroek RE, Hoskins L, Catterall WA (1998) Localization of Ca2+ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals. J Neurosci 18:6319–6330.

    PubMed  Google Scholar 

  • Westenbroek RE, Sakurai T, Elliott EM, Hell JW, Starr TV, Snutch TP, Catterall WA (1995) Immunochemical identification and subcellular distribution of the W1A subunits of brain calcium channels. J Neurosci 15:6403–6418.

    PubMed  Google Scholar 

  • Westenbroek RE, Hell JW, Warner C, Dubel SJ, Snutch TP, Catterall WA (1992) Biochemical properties and subcellular distribution of an N-type calcium channel W1 subunit. Neuron 9:1099–1115.

    PubMed  Google Scholar 

  • Wick MJ, Minnerath SR, Lin X, Elde R, Law PY, Loh HH (1994) Isolation of a novel cDNA encoding a putative membrane receptor with high homology to the cloned , , and , opioid receptors. Brain Res Mol Brain Res 27:37–44.

    PubMed  Google Scholar 

  • Williams ME, Brust PF, Feldman DH, Patthi S, Simerson S, Maroufi A, McCue AF, Velicelebi G, Ellis SB, Harpold MM (1992) Structure and functional expression of an G-conotoxin-sensitive human N-type calcium channel. Science 257:389–395.

    PubMed  Google Scholar 

  • Witcher DR, De Waard M, Liu H, Pragnell M, Campbell KP (1995) Association of native Ca2+ channel subunits with the 1 subunit interaction domain. J Biol Chem 270:18088–18093.

    PubMed  Google Scholar 

  • Wu LG, Saggau P (1997) Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci 20:204–212.

    PubMed  Google Scholar 

  • Wu LG, Westenbroek RE, Borst JG, Catterall WA, Sakmann B (1999) Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J Neurosci 19:726–736.

    PubMed  Google Scholar 

  • Xu XJ, Hao JX, Wiesenfeld-Hallin Z (1996) Nociceptin or antinociceptin: potent spinal antinociceptive effect of orphanin FQ/nociceptin in the rat. Neuroreport 7:2092–2094.

    PubMed  Google Scholar 

  • Yamaguchi H, Hara M, Strobeck M, Fukasawa K, Schwartz A, Varadi G (1998) Multiple modulation pathways of calcium channel activity by a i subunit. Direct evidence of subunit participation in membrane trafficking of the 1C subunit. J Biol Chem 273:19348–19356.

    PubMed  Google Scholar 

  • Yamamoto T, Nozaki-Taguchi N, Kimura S (1997a) Analgesic effect of intrathecally administered nociceptin, an opioid receptor-like1 receptor agonist, in the rat formalin test. Neuroscience 81:249–254.

    PubMed  Google Scholar 

  • Yamamoto T, Nozaki-Taguchi N, Kimura S (1997b) Effects of intrathecally administered nociceptin, an opioid receptor-like1 (ORL1) receptor agonist, on the thermal hyperalgesia induced by unilateral constriction injury to the sciatic nerve in the rat. Neurosci Lett 224:107–110.

    PubMed  Google Scholar 

  • Yang N, Horn R (1995) Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15:213–218.

    PubMed  Google Scholar 

  • Yasuda T, Lewis RJ, Adams DJ (2004a) Overexpressed Cav>3 inhibits N-type (Cav2.2) calcium channel currents through a hyperpolarizing shift of “ultra-slow” and “closed-state” inactivation. J Gen Physiol 123:401–416.

    PubMed  Google Scholar 

  • Yasuda T, Chen L, Barr W, McRory JE, Lewis RJ, Adams DJ, Zamponi GW (2004b) Auxiliary subunit regulation of high-voltage activated calcium channels expressed in mammalian cells. Eur J Neurosci 20:1–13.

    PubMed  Google Scholar 

  • Zamponi GW, Snutch TP (1998) Decay of prepulse facilitation of N type calcium channels during G protein inhibition is consistent with binding of a single Gi subunit. Proc Natl Acad Sci USA 95:4035–4039.

    PubMed  Google Scholar 

  • Zamponi GW, Bourinet E, Nelson D, Nargeot J, Snutch TP (1997) Crosstalk between G proteins and protein kinase C mediated by the calcium channel Z1 subunit. Nature 385:442–446.

    PubMed  Google Scholar 

  • Zhang JF, Ellinor PT, Aldrich RW, Tsien RW (1996) Multiple structural elements in voltage-dependent Ca2+ channels support their inhibition by G proteins. Neuron 17:991–1003.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yasuda, T., Adams, D.J. (2008). Voltage-Gated Calcium Channels in Nociception. In: Martinac, B. (eds) Sensing with Ion Channels. Springer Series in Biophysics, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72739-2_13

Download citation

Publish with us

Policies and ethics