Skip to main content

Epithelial Sodium and Acid-Sensing Ion Channels

  • Chapter
Sensing with Ion Channels

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 11))

The epithelial Na+ channel (ENaC) and acid-sensing ion channels (ASICs) are non-voltage-gated Na+ channels that form their own subfamilies within the ENaC/degenerin ion channel family. ASICs are sensors of extracellular pH, and ENaC, whose main function is trans-epithelial Na+ transport, can sense extra- and intra-cellular Na+. In aldosterone-responsive epithelial cells of the kidney, ENaC plays a critical role in the control of sodium balance, blood volume and blood pressure. In airway epithelia, ENaC has a distinct role in controlling fluid reabsorption at the air–liquid interface, thereby determining the rate of mucociliary transport. In taste receptor cells of the tongue, ENaC is involved in salt taste sensation. ASICs have emerged as key sensors for extracellular protons in central and peripheral neurons. Although not all of their physiological and pathological functions are firmly established yet, there is good evidence for a role of ASICs in the brain in learning, expression of fear, and in neurodegeneration after ischaemic stroke. In sensory neurons, ASICs are involved in nociception and mechanosensation. ENaC and ASIC subunits share substantial sequence homology and the conservation of several functional domains. This chapter summarises our current understanding of the physiological functions and of the mechanisms of ion permeation, gating and regulation of ENaC and ASICs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anantharam A, Tian Y, Palmer LG (2006) Open probability of the epithelial sodium channel is regulated by intracellular sodium. J Physiol 574:333–347.

    Article  PubMed  Google Scholar 

  • Babini E, Paukert M, Geisler HS, Grunder S (2002) Alternative splicing and interaction with di- and polyvalent cations control the dynamic range of acid-sensing ion channel 1 (ASIC1). J Biol Chem 277:41597–41603.

    Article  PubMed  Google Scholar 

  • Baron A, Schaefer L, Lingueglia E, Champigny G, Lazdunski M (2001) Zn2+ and H+ are coactivators of acid-sensing ion channels. J Biol Chem 276:35361–35367.

    Article  PubMed  Google Scholar 

  • Baron A, Waldmann R, Lazdunski M (2002) ASIC-like, proton-activated currents in rat hippocampal neurons. J Physiol 539:485–494.

    Article  PubMed  Google Scholar 

  • Bassler EL, Ngo-Anh TJ, Geisler HS, Ruppersberg JP, Grunder S (2001) Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b. J Biol Chem 276:33782–33787.

    Article  PubMed  Google Scholar 

  • Benson CJ, Xie JH, Wemmie JA, Price MP, Henss JM, Welsh MJ, Snyder PM (2002) Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. Proc Natl Acad Sci USA 99:2338–2343.

    Article  PubMed  Google Scholar 

  • Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger J-D, Rossier BC (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367:463–467.

    Article  PubMed  Google Scholar 

  • Chen C-C, Zimmer A, Sun W-H, Hall J, Brownstein MJ, Zimmer A (2002) A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc Natl Acad Sci USA 99:8992–8997.

    PubMed  Google Scholar 

  • Chen X, Kalbacher H, Grunder S (2005) The tarantula toxin psalmotoxin 1 inhibits acid-sensing ion channel (ASIC) 1a by increasing its apparent H+ affinity. J Gen Physiol 126:71–79.

    Article  PubMed  Google Scholar 

  • Chraibi A, Horisberger AD (2002) Na self inhibition of human epithelial Na channel: temperature dependence and effect of extracellular proteases. J Gen Physiol 120:133–145.

    PubMed  Google Scholar 

  • Chu XP, Wemmie JA, Wang WZ, Zhu XM, Saugstad JA, Price MP, Simon RP, Xiong ZG (2004) Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J Neurosci 24:8678–8689.

    Article  PubMed  Google Scholar 

  • Cobbe SM, Poole-Wilson PA (1980) Tissue acidosis in myocardial hypoxia. J Mol Cell Cardiol 12:761–770.

    Article  PubMed  Google Scholar 

  • Coric T, Zhang P, Todorovic N, Canessa CM (2003) The extracellular domain determines the kinetics of desensitization in acid-sensitive ion channel 1. J Biol Chem 278:45240–45247.

    Article  PubMed  Google Scholar 

  • Coric T, Zheng D, Gerstein M, Canessa CM (2005) Proton-sensitivity of ASIC1 appeared with the rise of fishes by changes of residues in the region that follows TM1 in the ectodomain of the channel. J Physiol 568.3:725–735.

    Article  PubMed  Google Scholar 

  • Coscoy S, Lingueglia E, Lazdunski M, Barbry P (1998) The phe-met-arg-phe-amide-activated sodium channel is a tetramer. J Biol Chem 273:8317–8322.

    Article  PubMed  Google Scholar 

  • Coscoy S, de Weille JR, Lingueglia E, Lazdunski M (1999) The pre-transmembrane 1 domain of acid-sensing ion channels participates in the ion pore. J Biol Chem 274:10129–10132.

    Article  PubMed  Google Scholar 

  • De la Rosa DA, Krueger SR, Kolar A, Shao D, Fitzsimonds RM, Canessa CM (2003) Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. J Physiol 546:77–87.

    Article  Google Scholar 

  • DeSimone JA, Lyall V (2006) Taste receptors in the gastrointestinal tract III. Salty and sour taste: sensing of sodium and protons by the tongue. Am J Physiol Gastrointest Liver Physiol 291:G1005–G1010.

    Article  PubMed  Google Scholar 

  • Deval E, Baron A, Lingueglia E, Mazarguil H, Zajac JM, Lazdunski M (2003) Effects of neuropeptide SF and related peptides on acid sensing ion channel 3 and sensory neuron excitability. Neuropharmacology 44:662–671.

    Article  PubMed  Google Scholar 

  • Diochot S, Baron A, Rash LD, Deval E, Escoubas P, Scarzello S, Salinas M, Lazdunski M (2004) A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. EMBO J 23:1516–1525.

    Article  PubMed  Google Scholar 

  • Driscoll M, Chalfie M (1991) The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349:588–593.

    Article  PubMed  Google Scholar 

  • Escoubas P, DeWeille JR, Lecoq A, Diochot S, Waldmann R, Champigny G, Moinier D, Ménez A, Lazdunski M (2000) Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J Biol Chem 275:25116–25121.

    Article  PubMed  Google Scholar 

  • Farman N, Talbot CR, Boucher R, Fay M, Canessa C, Rossier B, Bonvalet JP (1997) Noncoordinated expression of 7, , and , subunit mRNAs of epithelial Na+ channel along rat respiratory tract. Am J Physiol 41:C 131–C 141.

    Google Scholar 

  • Feldman GM, Mogyorosi A, Heck GL, DeSimone JA, Santos CR, Clary RA, Lyall V (2003) Salt-evoked lingual surface potential in humans. J Neurophysiol 90:2060–2064.

    Article  PubMed  Google Scholar 

  • Firsov D, Gautschi I, Merillat AM, Rossier BC, Schild L (1998) The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J 17:344–352.

    Article  PubMed  Google Scholar 

  • Firsov D, Robert-Nicoud M, Gruender S, Schild L, Rossier BC (1999) Mutational analysis of cysteine-rich domains of the epithelium sodium channel (ENaC)–identification of cysteines essential for channel expression at the cell surface. J Biol Chem 274:2743–2749.

    Article  PubMed  Google Scholar 

  • Gao J, Duan B, Wang DG, Deng XH, Zhang GY, Xu L, Xu TL (2005) Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 48:635–646.

    Article  PubMed  Google Scholar 

  • Garty H, Palmer LG (1997) Epithelial sodium channels–function, structure, and regulation. Physiol Rev 77:359–396.

    PubMed  Google Scholar 

  • Grunder S, Firsov D, Chang SS, Jaeger NF, Gautschi I, Schild L, Lifton RP, Rossier BC (1997) A mutation causing pseudohypoaldosteronism type 1 identifies a conserved glycine that is involved in the gating of the epithelial sodium channel. EMBO J 16:899–907.

    Article  PubMed  Google Scholar 

  • Horisberger JD, Chraibi A (2004) Epithelial sodium channel: a ligand-gated channel? Nephron Physiol 96:p37–41.

    Article  PubMed  Google Scholar 

  • Hughey RP, Bruns JB, Kinlough CL, Harkleroad KL, Tong Q, Carattino MD, Johnson JP, Stockand JD, Kleyman TR (2004) Epithelial sodium channels are activated by furin-dependent proteolysis. J Biol Chem 279:18111–18114.

    Article  PubMed  Google Scholar 

  • Hummler E, Barker P, Gatzy J, Beermann F, Verdumo C, Schmidt A, Boucher RC, Rossier BC (1996) Early death due to defective neonatal lung liquid clearance in tENaC-deficient mice. Nat Genet 12:325–328.

    Article  PubMed  Google Scholar 

  • Immke DC, McCleskey EW (2001) Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons. Nat Neurosci 4:869–870.

    Article  PubMed  Google Scholar 

  • Issberner U, Reeh PW, Steen KH (1996) Pain due to tissue acidosis: a mechanism for inflammatory and ischemic myalgia? Neurosci Lett 208:191–194.

    Article  PubMed  Google Scholar 

  • Ji HL, Benos DJ (2004) Degenerin sites mediate proton activation of JJJ-epithelial sodium channel. J Biol Chem 279:26939–26947.

    Article  PubMed  Google Scholar 

  • Jones NG, Slater R, Cadiou H, McNaughton P, McMahon SB (2004) Acid-induced pain and its modulation in humans. J Neurosci 24:10974–10979.

    Article  PubMed  Google Scholar 

  • Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82:735–767.

    PubMed  Google Scholar 

  • Kellenberger S, Gautschi I, Rossier BC, Schild L (1998) Mutations causing Liddle syndrome reduce sodium-dependent downregulation of the epithelial sodium channel in the Xenopus oocyte expression system. J Clin Invest 101:2741–2750.

    Article  PubMed  Google Scholar 

  • Kellenberger S, Gautschi I, Schild L (1999a) A single point mutation in the pore region of the epithelial Na+ channel changes ion selectivity by modifying molecular sieving. Proc Natl Acad Sci USA 96:4170–4175.

    Article  PubMed  Google Scholar 

  • Kellenberger S, Hoffmann-Pochon N, Gautschi I, Schneeberger E, Schild L (1999b) On the molecular basis of ion permeation in the epithelial Na+ channel. J Gen Physiol 114:13–30.

    Article  PubMed  Google Scholar 

  • Kellenberger S, Auberson M, Gautschi I, Schneeberger E, Schild L (2001) Permeability properties of ENaC selectivity filter mutants. J Gen Physiol 118:679–692.

    Article  PubMed  Google Scholar 

  • Kellenberger S, Gautschi I, Pfister Y, Schild L (2005) Intracellular thiol-mediated modulation of epithelial sodium channel activity. J Biol Chem 280:7739–7747.

    Article  PubMed  Google Scholar 

  • Krishtal O (2003) The ASICs: signaling molecules? Modulators? Trends Neurosci 26:477–483.

    Article  PubMed  Google Scholar 

  • Lifton RP, Gharavi AG, Geller DS (2001) Molecular mechanisms of human hypertension. Cell 104:545–556.

    Article  PubMed  Google Scholar 

  • Lingueglia E, Deval E, Lazdunski M (2006) FMRFamide-gated sodium channel and ASIC channels: a new class of ionotropic receptors for FMRFamide and related peptides. Peptides 27:1138–1152.

    Article  PubMed  Google Scholar 

  • Liu JD, Schrank B, Waterston RH (1996) Interaction between a putative mechanosensory membrane channel and a collagen. Science 273:361–364.

    Article  PubMed  Google Scholar 

  • Liu L, Leonard AS, Motto DG, Feller MA, Price MP, Johnson WA, Welsh MJ (2003) Contribution of Drosophila DEG/ENaC genes to salt taste. Neuron 39:133–146.

    Article  PubMed  Google Scholar 

  • Loffing J, Schild L (2005) Functional domains of the epithelial sodium channel. J Am Soc Nephrol 16:3175–3181.

    Article  PubMed  Google Scholar 

  • MacRobbie EAC, Ussing HH (1961) Osmotic behaviour of the epithelial cells of frog skin. Acta Physiol Scand 53:348–365.

    Article  PubMed  Google Scholar 

  • Mogil JS, Breese NM, Witty M-F, Ritchie J, Rainville M-L, Ase A, Abbadi N, Stucky CL, Seguela P (2005) Transgenic expression of a dominant-negative asic3 subunit leads to increased sensitivity to mechanical and inflammatory stimuli. J Neurosci 25:9893–9901.

    Article  PubMed  Google Scholar 

  • Palmer LG (1982) Ion selectivity of the apical membrane Na channel in the toad urinary bladder. J Membr Biol 67:91–98.

    Article  PubMed  Google Scholar 

  • Palmer LG (1984) Voltage-dependent block by amiloride and other monovalent cations of apical Na channels in the toad urinary bladder. J Membr Biol 80:153–165.

    Article  PubMed  Google Scholar 

  • Palmer LG, Frindt G (1996) Gating of Na channels in the rat cortical collecting tubule: effects of voltage and membrane stretch. J Gen Physiol 107:35–45.

    Article  PubMed  Google Scholar 

  • Paukert M, Babini E, Pusch M, Grunder S (2004) Identification of the Ca2+ blocking site of acid-sensing ion channel (ASIC) 1: implications for channel gating. J Gen Physiol 124:383–394.

    Article  PubMed  Google Scholar 

  • Pfister Y, Gautschi I, Takeda AN, van Bemmelen M, Kellenberger S, Schild L (2006) A gating mutation in the internal pore of ASIC1a. J Biol Chem 281:11787–11791.

    Article  PubMed  Google Scholar 

  • Poirot O, Vukicevic M, Boesch A, Kellenberger S (2004) Selective regulation of acid-sensing ion channel 1 by serine proteases. J Biol Chem 279:38448–38457.

    Article  PubMed  Google Scholar 

  • Poirot O, Berta T, Decosterd I, Kellenberger S (2006) Distinct ASIC currents are expressed in rat putative nociceptors and are modulated by nerve injury. J Physiol 576:215–234.

    Article  PubMed  Google Scholar 

  • Price MP, Lewin GR, Mcllwrath SL, Cheng C, Xie J, Heppenstall PA, Stucky CL, Mannsfeldt AG, Brennan TJ, Drummond HA, Qiao J, Benson CJ, Tarr DE, Hrstka RF, Yang B, Williamson RA, Welsh MJ (2000) The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407:1007–1011.

    Article  PubMed  Google Scholar 

  • Price MP, McIlwrath SL, Xie JH, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ (2001) The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32:1071–1083.

    Article  PubMed  Google Scholar 

  • Randell SH, Boucher RC (2006) Effective mucus clearance is essential for respiratory health. Am J Respir Cell Mol Biol 35:20–28.

    Article  PubMed  Google Scholar 

  • Rossier BC (2004) The epithelial sodium channel: activation by membrane-bound serine proteases. Proc Am Thorac Soc 1:4–9.

    Article  PubMed  Google Scholar 

  • Roza C, Puel J-L, Kress M, Baron A, Diochot S, Lazdunski M, Waldmann R (2004) Knockout of the ASIC2 channel in mice does not impair cutaneous mechanosensation, visceral mechanonociception and hearing. J Physiol 558:659–669.

    Article  PubMed  Google Scholar 

  • Salinas M, Rash LD, Baron A, Lambeau G, Escoubas P, Lazdunski M (2006) The receptor site of the spider toxin PcTx1 on the proton-gated cation channel ASIC1a. J Physiol 570:339–354.

    PubMed  Google Scholar 

  • Saugstad JA, Roberts JA, Dong J, Zeitouni S, Evans RJ (2004) Analysis of the membrane topology of the acid-sensing ion channel 2a. J Biol Chem 279:55514–55519.

    Article  PubMed  Google Scholar 

  • Schild L, Schneeberger E, Gautschi I, Firsov D (1997) Identification of amino acid residues in the S, , , subunits of the epithelial sodium channel (ENaC) involved in amiloride block and ion permeation. J Gen Physiol 109:15–26.

    Article  PubMed  Google Scholar 

  • Sheng S, Carattino MD, Bruns JB, Hughey RP, Kleyman TR (2006) Furin cleavage activates the epithelial Na+ channel by relieving Na+ self-inhibition. Am J Physiol Renal Physiol 290:F1488–F1496.

    Article  PubMed  Google Scholar 

  • Siesjo BK, Katsura K, Kristian T (1996) Acidosis-related damage. Adv Neurol 71:209–233; discussion 234–206.

    PubMed  Google Scholar 

  • Silver RB, Frindt G, Windhager EE, Palmer LG (1993) Feedback regulation of Na channels in rat CCT. I. Effects of inhibition of Na pump. Am J Physiol 264:F557–F564.

    PubMed  Google Scholar 

  • Sluka KA, Price MP, Breese NA, Stucky CL, Wemmie JA, Welsh MJ (2003) Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain 106:229–239.

    Article  PubMed  Google Scholar 

  • Smith DV, Ossebaard CA (1995) Amiloride suppression of the taste intensity of sodium chloride: evidence from direct magnitude scaling. Physiol Behav 57:773–777.

    Article  PubMed  Google Scholar 

  • Snyder PM, Cheng C, Prince LS, Rogers JC, Welsh MJ (1998) Electrophysiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits. J Biol Chem 273:681–684.

    Article  PubMed  Google Scholar 

  • Snyder PM, Olson DR, Bucher DB (1999) A pore segment in DEG/ENaC Na+ channels. J Biol Chem 274:28484–28490.

    Article  PubMed  Google Scholar 

  • Staub O, Verrey F (2005) Impact of Nedd4 proteins and serum and glucocorticoid-induced kinases on epithelial Na+ transport in the distal nephron. J Am Soc Nephrol 16:3167–3174.

    Article  PubMed  Google Scholar 

  • Staub O, Dho S, Henry P, Correa J, Ishikawa T, McGlade J, Rotin D (1996) WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle’s syndrome. EMBO J 15:2371–2380.

    PubMed  Google Scholar 

  • Sutherland SP, Benson CJ, Adelman JP, McCleskey EW (2001) Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc Natl Acad Sci USA 98:711–716.

    Article  PubMed  Google Scholar 

  • Ugawa S, Ueda T, Ishida Y, Nishigaki M, Shibata Y, Shimada S (2002) Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Invest 110:1185–1190.

    PubMed  Google Scholar 

  • Vallet V, Chraibi A, Gaeggeler HP, Horisberger JD, Rossier BC (1997) An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature 389:607–610.

    Article  PubMed  Google Scholar 

  • Voilley N, de Weille J, Mamet J, Lazdunski M (2001) Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci 21:8026–8033.

    PubMed  Google Scholar 

  • Vukicevic M, Kellenberger S (2004) Modulatory effects of acid-sensing ion channels (ASICs) on action potential generation in hippocampal neurons. Am J Physiol Cell Physiol 287:C682–C690.

    Article  PubMed  Google Scholar 

  • Vukicevic M, Weder G, Boillat A, Boesch A, Kellenberger S (2006) Trypsin cleaves acid-sensing ion channel 1a in a domain that is critical for channel gating. J Biol Chem 281:714–722.

    Article  PubMed  Google Scholar 

  • Waldmann R, Lazdunski M (1998) H+-gated cation channels–neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 8:418–424.

    Article  PubMed  Google Scholar 

  • Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997) A proton-gated cation channel involved in acid-sensing. Nature 386:173–177.

    Article  PubMed  Google Scholar 

  • Wang WZ, Chu XP, Li MH, Seeds J, Simon RP, Xiong ZG (2006) Modulation of acid-sensing ion channel currents, acid-induced increase of intracellular Ca2+, and acidosis-mediated neuronal injury by intracellular pH. J Biol Chem 281:29369–29378.

    Article  PubMed  Google Scholar 

  • Wemmie JA, Chen JG, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E, Hoshi T, Freeman JH, Welsh MJ (2002) The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34:463–477.

    Article  PubMed  Google Scholar 

  • Wemmie JA, Askwith CC, Lamani E, Cassell MD, Freeman JH, Welsh MJ (2003) Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci 23:5496–5502.

    PubMed  Google Scholar 

  • Wemmie JA, Coryell MW, Askwith CC, Lamani E, Leonard AS, Sigmund CD, Welsh MJ (2004) Overexpression of acid-sensing ion channel 1a in transgenic mice increases acquired fear-related behavior. Proc Natl Acad Sci USA 101:3621–3626.

    Article  PubMed  Google Scholar 

  • Wemmie JA, Price MP, Welsh MJ (2006) Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci 29:578–586.

    Article  PubMed  Google Scholar 

  • Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ, Simon RP (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118:687–698.

    Article  PubMed  Google Scholar 

  • Yagi J, Wenk HN, Naves LA, McCleskey EW (2006) Sustained currents through ASIC3 ion channels at the modest pH changes that occur during myocardial ischemia. Circ Res 99:501–509.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kellenberger, S. (2008). Epithelial Sodium and Acid-Sensing Ion Channels. In: Martinac, B. (eds) Sensing with Ion Channels. Springer Series in Biophysics, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72739-2_11

Download citation

Publish with us

Policies and ethics