Skip to main content

Agents for Polarization Enhancement in MRI

  • Chapter
Book cover Molecular Imaging I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 185/1))

Abstract

The intrinsic low sensitivity of the NMR phenomenon can be overcome thanks to hyperpolarization procedures that break the limits of the Boltzmann equilibrium and may increase the NMR signal by a factor of 105. Hyperpolarization procedures have been applied to enhance the signal from noble gases, such as 3He and 129Xe, and small 13C-containing molecules. For the latter class, attention has been focused on the use of methods based on dynamic nuclear polarization (DNP) and para-hydrogen induced polarization (PHIP). After discussion of the basics of the methods, an overview of the main applications with 13C-containing molecules is presented. This includes pre-clinical MR investigations of vascular imaging, perfusion and catheter tracking as well as molecular imaging protocols that allow the development of highly innovative studies in the field of metabolic imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abragam A, Goldman M (1978) Principles of dynamic nuclear polarisation. Rep Prog Phys 41:395-467

    Article  CAS  Google Scholar 

  • Aime S, Gobetto R, Canet D (1998) Longitudinal nuclear relaxation in an A2 spin system initially polarized through para-hydrogen. J Am Chem Soc 120:6770-6773

    Article  CAS  Google Scholar 

  • Aime S, Dastr ù W, Gobetto R, Russo A, Viale A, Canet D (1999) A novel application of para H2 : the reversible addition/elimination of H2 at a Ru3 cluster revealed by the enhanced nmr emission resonance from molecular hydrogen. J Phys Chem A 103:9702-9705

    Article  CAS  Google Scholar 

  • Aime S, Gobetto R, Reineri F (2003) Hyperpolarization transfer from parahydrogen to deuterium via carbon-13. J Chem Phys 119:8890-8896

    Article  CAS  Google Scholar 

  • Aime S, Carrera C, Delli Caselli D, Geninatti S, Terreno E (2005) Tunable imaging of cells labeled with MRI-PARACEST agents. Angew Chem Int Ed 44:1813-1815

    Article  CAS  Google Scholar 

  • Albert MS, Cates GD, Driehuys B, Happer W, Saam B, Springer CS Jr et al (1994) Biological magnetic resonance imaging using laser-polarized 129 Xe. Nature 370:199-201

    Article  PubMed  CAS  Google Scholar 

  • Altes TA, Salerno M (2004) Hyperpolarized gas MR imaging of the lung. J Thoracic Imag 19:250-258

    Article  Google Scholar 

  • Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci USA 100:10158-10163

    Article  PubMed  CAS  Google Scholar 

  • Bajaj VS, Farrar CT, Hornstein MK, Mastovsky I, Vieregg J, Bryant J, El èna B, Kreischer KE, Temkin RJ, Griffin RG (2003) Dynamic nuclear polarization at 9 T using a novel 250 GHz gyrotron microwave source. J Magn Res 160:85-90

    Article  CAS  Google Scholar 

  • Bargon J, Kandels J (1993) Nuclear magnetic resonance studies of homogeneous catalysis using parahydrogen: analysis of nuclear singlet triplet mixing as a diagnostic tool to characterize intermediates. J Chem Phys 98:6150-6153

    Article  CAS  Google Scholar 

  • Bargon J, Kandels J, Woelk KZ (1993) Orthohydrogen and parahydrogen induced nuclear spin polarization. Phys Chem 180:65-93

    CAS  Google Scholar 

  • Bargon J, Bommerich U, Kadlecek S, Ishii M, Fischer MC, Rizi RR (2005) Homogeneous hydro-genation yielding a hyperpolarized form of the inhalation narcotic diethyl ether. Proc Intl Soc Magn Reson Med, 13th Scientific Meeting, Abstracts, p 2572

    Google Scholar 

  • Barkemeyer J, Haake M, Bargon J (1995) Hetero-NMR enhancement via parahydrogen labelling. J Am Chem Soc 117:2927-2928

    Article  CAS  Google Scholar 

  • Bartik K, Luhmer M, Dutasta P, Collet A, Reisse J (1998) Xe and 1 H NMR study of the re-versible trapping of xenon by cryptophane-A in organic solution. J Am Chem Soc 120:784-791

    Article  CAS  Google Scholar 

  • Bifone A, Song YQ, Seydoux R, Taylor RE, Goodson BM, Pietrass T, Budinger TF, Navon G, Pines A (1996) NMR of laser-polarized xenon in human blood. Proc Natl Acad Sci USA 93: 12932-12936

    Article  PubMed  CAS  Google Scholar 

  • Bowers CR, Weitekamp DP (1986) Transformation of symmetrization order to nuclear-spin mag-netization by chemical reaction and nuclear magnetic resonance. Phys Rev Lett 57:2645-2648

    Article  PubMed  CAS  Google Scholar 

  • Bowers CR, Weitekamp DP (1987) Parahydrogen and synthesis allow dramatically enhanced nu-clear alignment. J Am Chem Soc 109:5541-5542

    Article  CAS  Google Scholar 

  • Bowers CR, Jones DH, Kurur ND, Labinger JA, Pravica MG, Weitekamp DP (1990) Symmetriza-tion postulate and nuclear magnetic resonance of reacting systems. Adv Magn Res 14:269

    Google Scholar 

  • Brown TR (2000) Chemical shift imaging. In: Methods in biomedical magnetic resonance imaging and spectroscopy, vol 2. Wiley, Chichester, pp 751-763

    Google Scholar 

  • Callot V, Canet E, Brochot J, Berthezene Y, Viallon M, Humblot H, Briguet A, Tournier H, Cremillieux Y (2001a) Vascular and perfusion imaging using encapsulated laser-polarized Helium. Magma 12:16-22

    Article  CAS  Google Scholar 

  • Callot V, Canet E, Brochot J, Viallon M, Humblot H, Briguet A, Tournier H, Cremillieux Y (2001b) MR perfusion imaging using encapsulated laser-polarized 3 He. Magn Reson Med 46:535-540

    Article  CAS  Google Scholar 

  • Cutillo AG (ed) (1996) Application of magnetic resonance to the study of lung. Futura, Armonk

    Google Scholar 

  • Duckett SB, Sleigh CJ (1999) Applications of the parahydrogen phenomenon: a chemical perspective. Progr Nucl Magn Reson Spectrosc 34:71-92

    Article  CAS  Google Scholar 

  • Duckett SB, Newell, CL Eisenberg R (1993) More than INEPT: parahydrogen and INEPT + give unprecedented resonance enhancement to carbon-13 by direct proton polarization transfer. J Am Chem Soc 115:1156-1157

    Article  CAS  Google Scholar 

  • Duckett SB, Newell CL, Eisenberg R (1994) Observation of new intermediates in hydrogenation catalyzed by Wilkinson’s Catalyst, RhCl(PPh3)3, using parahydrogen-induced polarization. J Am Chem Soc 169:10548-10556

    Article  Google Scholar 

  • Duhamel G, Choquet P, Grillon E, Lamalle L, Leviel JL, Ziegler A, Constantinesco A (2001) Xenon-129 MR imaging and spectroscopy of rat brain using arterial delivery of hyperpolarized xenon in a lipid emulsion. Magn Reson Med 46:208-212

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg R (1991) Parahydrogen-induced polarization: a new spin on reactions with molecular hydrogen, Acc Chem Res 24:110-116; and references therein

    Google Scholar 

  • Eisenschmid TC, Kirss RU, Deusch PP, Hommeltoft SI, Eisenberg R (1987) Para hydrogen induced polarization in hydrogenation reactions. J Am Chem Soc 109:8089-8091

    Article  CAS  Google Scholar 

  • Eisenschmid TC, McDonald J, Eisenberg R (1989) INEPT in a chemical way Polarization transfer from para hydrogen to phosphorus-31 by oxidative addition and dipolar relaxation. J Am Chem Soc 111:7267-7269

    Article  CAS  Google Scholar 

  • Gerfen GJ, Becerra LR, Hall DA, Griffin RG, Temkin RJ, Singel DJ (1995) High-frequency (140 GHz) dynamic nuclear polarization: polarization transfer to a solute in frozen aqueous solution. J Chem Phys 102:9494-9497

    Article  CAS  Google Scholar 

  • Goldman M, Johannesson H (2005) Conversion of a proton pair para order into 13 C polarization by RF irradiation, for use in MRI. CR Phisique 6:575-581

    Article  CAS  Google Scholar 

  • Goldman M, Johannesson H, Axelsson O, Karlsson M (2005) Hyperpolarization of 13 C through order transfer from parahydrogen: a new contrast agent for MRI. Magn Reson Imag 23:153-157

    Article  CAS  Google Scholar 

  • Golman K, Petersson JS (2006) Metabolic imaging and other applications of hyperpolarized 13 C. Acad Radiol 13:932-942

    Article  PubMed  Google Scholar 

  • Golman K, Axelsson O, Johanneson H, Olofsson C, Mansson S, Petersson S (1998) Nycomed Innovation AB, patent no. WO9924080

    Google Scholar 

  • Golman K, Axelsson O, Johannesson H, Mansson S, Olofsson, C, Petersson JS (2001) Parahydrogen-induced polarization in imaging: subsecond 13 C angiography. Magn Res Med 46:1-5

    Article  CAS  Google Scholar 

  • Golman K, Ardenkjaer-Larsen JH, Svensson J, Axelsson O, Hansson G, Hansson L, Johannesson H, Leunbach I, Mansson S, Petersson JS, Pettersson G, Servin R, Wistrand LG (2002) C-Angiography. Acad Radiol 9(Suppl 2):S507-S510

    Article  Google Scholar 

  • Golman K, Olsson, LE, Axelsson, O, Mansson S, Karlsson M, Petersson JS (2003) Molecular imaging using hyperpolarized 13 C. Br J Radiol 76:S118-S127

    Article  PubMed  CAS  Google Scholar 

  • Golman K, Olsson LE, Petersson JS (2005) Dynamic interventional MR imaging using hyperpo-larized C-13. Acad Radiol 12(Suppl 1):S70-S71

    Article  Google Scholar 

  • Golman K, in ‘t Zandt R, Lerche M, Perhson R, Ardenkjaer-Larsen H (2006a) Metabolic imaging by hyperpolarized 13 C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res 66:10855-10860

    Google Scholar 

  • Golman K, Zandt R, Thaning M (2006b) Real-time metabolic imaging. Proc Natl Acad Sci USA 103:11270-11275

    Google Scholar 

  • Hall DA, Maus DC, Gerfen GJ, Inati SJ, Becerra LR, Dahlquist FW, Griffin RG (1997) Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. Science 276:930-932

    Article  PubMed  CAS  Google Scholar 

  • Hu JZ, Zhou JW, Yang BL, Li LY, Qiu JQ, Ye CH, Solum MS, Wind RA, Pugmire RJ, Grant DM (1997) Dynamic nuclear polarization of nitrogen-15 in benzamide. Solid State Nucl Magn Res 8:129-137

    Article  CAS  Google Scholar 

  • Hu JZ, Solum MS, Wind RA, Nilsson BL, Peterson MA, Pugmire RJ, Grant DM (2000) N dynamic nuclear polarization studies of carbazole. J Phys Chem A 104:4413-4420

    Article  CAS  Google Scholar 

  • Johannesson H, Axelsson O, Karlsson M (2004) Transfer of para-hydrogen spin order into polar-ization by diabatic field cycling. CR Physique 5:315-324

    Article  CAS  Google Scholar 

  • Johansson E, Mansson, S, Wirestam R, Svensson J, Petersson JS, Golman K, Stahlberg F (2004a) Cerebral perfusion assessment by bolus tracking using hyperpolarized 13 C. Magn Reson Med 51:464-472

    Article  CAS  Google Scholar 

  • Johansson E, Olsson LE, Mansson S, Petersson JS, Golman K, Stahlberg F, Wirestam R (2004b) Perfusion assessment with bolus differentiation: a technique applicable to hyperpolarized trac-ers. Magn Reson Med 52:1043-1051

    Article  CAS  Google Scholar 

  • Johansson E, Magnusson P, Chai CM, Petersson JS, Golman K, Wirestam R, Stahlberg F (2005) Assessing myocardial perfusion using hyperpolarized 13 C. In: Proc 21st Annual Meeting ESM-RMB, p 117

    Google Scholar 

  • Kalechofsky NF (2002) Oxford Instruments Superconductivity Ltd, patent no. WO0155656

    Google Scholar 

  • Kauczor HU, Surkau, R, Roberts T (1998) MRI using hyperpolarized noble gases. Eur Radiol 8:820-827

    Article  PubMed  CAS  Google Scholar 

  • Kolman K, Ardenkjaer-Larsen JH, Petersson JS, Mansson S, Leunbach I (2003) Molecular imaging with endogenous substances. Proc Natl Acad Sci USA 100:10435-10439

    Article  CAS  Google Scholar 

  • Lamerichs RM, Luyten PR (2000) Proton decoupling during in vivo whole body phosphorus MRS. In: Methods in biomedical magnetic resonance imaging and spectroscopy, vol 2. Wiley, Chich-ester, pp 774-777

    Google Scholar 

  • Mansson, S, Petersson JS, Chai CM, Hansson G, Johansson E (2005) Passive catheter tracking using MRI and hyperpolarized 13 C. In: Proc 21st Annual Meeting ESMRMB, p 143

    Google Scholar 

  • Mansson S, Johansson E, Magnusson, P, Chai CM, Hansson G, Petersson JS, Stahlberg F, Golman K (2006) C-13 imaging - a new diagnostic platform. Eur Radiol 16:56-67

    Article  Google Scholar 

  • Matsumoto M, Espenson JH (2005) Kinetics of the interconversion of parahydrogen and orthohy-drogen catalyzed by paramagnetic complex ions. J Am Chem Soc 127:11447-11453

    Article  PubMed  CAS  Google Scholar 

  • Middleton H, Balck RD, Saam B, Cates GD, Cofer GP, Guenther R, Happer W, Hedlund LW, Johnson GA, Juvan K, Swartz J (1995) MR-imaging with hyperpolarized He-3 gas. Magn Reson Med 33:271-275

    Article  PubMed  CAS  Google Scholar 

  • Moller HE, Chawla MS, Chen XJ, Driehuys B, Hedlund LW, Wheeler CT, Johnson GA (1999) Magnetic resonance angiography with hyperpolarized 129 Xe dissolved in a lipid emul-sion. Magn Reson Med 41:1058-1064

    Article  PubMed  CAS  Google Scholar 

  • Moller HE, Chen XJ, Saam B, Hagspiel KD, Johnson GA Altes TA, de Lange EE, Kauczor HU (2002) MRI of the lungs using hyperpolarized noble gases. Magn Res Med 47:1029-1051

    Article  Google Scholar 

  • Morgensteyerne A, Hansson G, Axelsson O, Ardenkjaer-Larsen JH, Johannesson H, Olofsson C (2000) patent no. WO0071166

    Google Scholar 

  • Mugler JP 3rd, Driehuys B, Brookeman JR, Cates GD, Berr SS, Bryant RG, Daniel TM, de Lange EE, Downs 3rd JH, Erickson CJ, Happer W, Hinton DP, Kassel NF, Maier T, Phillips CD, Saam BT, Sauer KL, Wagshul ME (1997) MR imaging and spectroscopy using hyperpolarized 129Xe gas: preliminary human results. Magn Reson Med 37:809-815

    Article  PubMed  Google Scholar 

  • Natterer J, Bargon J (1997) Parahydrogen induced polarization. Progr Nucl Magn Reson Spectrosc 31:293-315

    Article  Google Scholar 

  • Natterer J, Schedletzky O, Barkemeyer J Bargon J (1998) Investigating catalytic processes with parahydrogen: evolution of zero-quantum coherence in AAX spin systems. J Magn Res 133:92-97

    Article  CAS  Google Scholar 

  • Oros AM, Shah NJ (2004) Hyperpolarized xenon in NMR and MRI, Phys Med Biol 49: R105-R153

    Article  PubMed  CAS  Google Scholar 

  • Ortidge RJ, Helpern JA, Hugg JW, Matson GB (2000) Single voxel whole body phosphorus MRS. In Methods in biomedical magnetic resonance imaging and spectroscopy, vol 1. Wiley, Chichester, pp 729-735

    Google Scholar 

  • Schroder L, Lowery TJ, Hilty C, Wemmer DE, Pines A (2006) Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science 314:446-449

    Article  PubMed  CAS  Google Scholar 

  • Spence MM, Rubin SM, Dimitrov IE, Ruiz EJ, Wemmer DE, Pines A, Yao SQ, Tian F, Schultz PG (2001) Functionalized xenon as a biosensor. Proc Natl Acad Sci USA 98:10654-10657

    Article  PubMed  CAS  Google Scholar 

  • Stephan M, Kohlman O, Niessen HG, Eichhorn A, Bargon J (2002) C PHIP NMR spectra and polarization transfer during the homogeneous hydrogenation of alkynes with parahydrogen. Magn Res Chem 40:157-160

    Article  CAS  Google Scholar 

  • Svensson J (2003) Contrast-enhanced magnetic resonance angiography: development and opti-mization of techniques for paramagnetic and hyperpolarized contrast media. Acta Radiol 44 Suppl 429:1-30

    Article  Google Scholar 

  • Svensson J, Mansson S, Petersson JS, Olsson LE (2002) Hyperpolarized 13 MR angiography using trueFISP. Proc Intl Soc Magn Res Med, 10th scientific meeting, Abstracts, p 2010

    Google Scholar 

  • Svensson J, Mansson S, Johansson E, Petersson JS, Olsson LE (2003) Hyperpolarized 13 C MR angiography using trueFISP. Magn Reson Med 50:256-262

    Article  PubMed  Google Scholar 

  • Swanson SD, Rosen MS, Agranoff BW, Coulter KP, Welsh RC, Chupp TE (1997) Brain MRI with laser-polarized 129xe. Magn Reson Med 38:695-698

    Article  PubMed  CAS  Google Scholar 

  • Un S, Prisner T, Weber RT, Seaman MJ, Fishbein KW, McDermott AE, Singel DJ, Griffin RG (1992) Pulsed dynamic nuclear polarization at 5 T. Chem Phys Lett 189:54-59

    Article  CAS  Google Scholar 

  • Wagshul ME, Button TM, Li HF, Liang Z, Springer CS, Zhong K, Wishnia A (1996) In vivo MR imaging and spectroscopy using hyperpolarized 129Xe. Magn Reson Med 36:183-191

    Article  PubMed  CAS  Google Scholar 

  • Wolber J, Rowland IJ, Leach MO, Bifone A (1999) Perfluorocarbon emulsions as intravenous delivery media for hyperpolarized xenon. Magn Reson Med 41:442-449

    Article  PubMed  CAS  Google Scholar 

  • Wolber J, Cherubini A, Leach MO, Bifone A (2000) Hyperpolarized 129 Xe NMR as a probe for blood oxygenation. Magn Reson Med 43:491-496

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Aime .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aime, S., Dastrù, W., Gobetto, R., Santelia, D., Viale, A. (2008). Agents for Polarization Enhancement in MRI. In: Semmler, W., Schwaiger, M. (eds) Molecular Imaging I. Handbook of Experimental Pharmacology, vol 185/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72718-7_12

Download citation

Publish with us

Policies and ethics