Skip to main content

Ultrasound Contrast Agents for Molecular Imaging

  • Chapter
Molecular Imaging I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 185/1))

Abstract

The successful use of targeted ultrasound contrast agents (USCAs) for qualitative US-based imaging has been shown by several academic and industrial research groups in different animal models. Furthermore, techniques have been developed that enable the in-vivo quantification of targeted microbubbles (MBs). USCAs for quantitative functional and molecular imaging in small animals can be used for a more detailed characterization of new and established disease models and provide quantitative biological insights into the interaction between drug and target or target and disease in living animals.

The advantages of such contrast agents in research and development are seen to be as follows:

  • new functional or molecular findings in the complex biology of disease development

  • these findings can lead to new therapeutic strategies or drug candidates

  • a better understanding of the treatment effects of new and existing drug candidates

  • a more sensitive and specific characterization of early treatment effects in living animals

  • identification of in-vivo biomarkers for translational medicine

Further outcomes are seen in speeding up the evaluation of new drug compounds and in a reduction of the number of animals used for biomedical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauer A, Blomley M, Leen E et al (1999) Liver-specific imaging with SHU 563 A: Diagnostic potential of a new class of ultrasound contrast media. Eur Radiol 9(Suppl 3):S349-S352

    Article  PubMed  Google Scholar 

  • Berwing K, Schleppe M (1988) Echocardiographic imaging of the left ventricle by peripheral intravenous injection of echo contrast agent. Amer Heart 115:399-408

    Article  CAS  Google Scholar 

  • Chiang CW, Lin FC, Fu M et al (1986) Importance of adequate gas-mixing in contrast echocardio-graphy. Chest 89:723-726

    Article  PubMed  CAS  Google Scholar 

  • Choi SH, Kono Y, Corbeil J et al (2004) Model to quantify lymph node enhancement on indirect sonographic lymphography. AJR Am J Roentgenol 183:513-517

    PubMed  Google Scholar 

  • Christiansen JP, Leong-Poi H, Klibanov AL et al (2002) Noninvasive imaging of myocardial reper-fusion injury using leukocyte-targeted contrast echocardiography. Circulation 105:1764-1767

    Article  PubMed  Google Scholar 

  • Cosgrove D (1996) Warum brauchen wir Kontrastmittel f ür den Ultraschall? Clin Radiol 51 (Suppl 1):1-4

    PubMed  Google Scholar 

  • Dayton PA, Ferrara KW (2002) Targeted imaging using ultrasound. J Magn Reson Imaging 16:362-377

    Article  PubMed  Google Scholar 

  • De Jong N (1997) Physics of microbubble scattering. In: Nanda NC, Schlief R, Goldberg BB (eds) Advances in echo imaging using contrast enhancement, 2nd edn. Kluwer, Dordrecht, pp 39-64

    Google Scholar 

  • Ellegala DB, Leong-Poi H, Carpenter JE et al (2003) Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to αvβ3 . Circulation 108:336-341

    Article  PubMed  Google Scholar 

  • Fischer NG, Christiansen JP, Klibanov AL et al (2002) Influence of microbubble surface charge on capillary transit and myocardial contrast enhancement. J Am Coll Cardiol 40:811-819

    Article  Google Scholar 

  • Fox RJ, Ransohoff RM (2004) New directions in MS therapeutics: vehicles of hope. Trends Immunol 25:632-636

    Article  PubMed  CAS  Google Scholar 

  • Gramiak R, Shah P (1968) Echocardiography of the aortic root. Invest Radiol 3:356-366

    Article  PubMed  CAS  Google Scholar 

  • Hauff P, Reinhardt M, Jeschke J et al (1994) Indirekte Lymphographie mit einem neuen Ultra-schallkontrastmittel (USKM). Ultraschalldiagnostik ’94, Drei-L änder-Treffen, Basel, Schweiz, 26-29.10.1994. Bildgebung/lmaging 61(Suppl 2):17

    Google Scholar 

  • Hauff P, Fritzsch T, Reinhardt M et al (1997) Delineation of experimental liver tumors in rabbits by a new ultrasound contrast agent and stimulated acoustic emission. Invest Radiol 32:94-99

    Article  PubMed  CAS  Google Scholar 

  • Hauff P, Stephens A, Br äutigam M (2003) New imaging probes. In: Debatin JF, Hricak H, Niendorf HP (eds) MRI: from current knowledge to new horizon. Excerpta Medica, pp 259-268

    Google Scholar 

  • Hauff P, Reinhardt M, Briel A et al (2004) Molecular targeting of lymph nodes with L-selectin ligand-specific us contrast agent: a feasibility study in mice and dogs. Radiology 231:667-673

    Article  PubMed  Google Scholar 

  • Hauff P, Seemann S, Reszka R et al (2005) Evaluation of gas-filled microparticles and sonoporation as gene delivery system: Feasibility study in rodent tumor model. Radiology 236:572-578

    Article  PubMed  Google Scholar 

  • Keller MW, Glasheen W, Teja K et al (1988) Myocardial contrast echocardiography without signif-icant hemodynamic effects or reactive hyperemia: a major advantage in the imaging of regional myocardial perfusion. J Amer Coll Cardiol 12:1039-1047

    Article  CAS  Google Scholar 

  • Klibanov AL (1999) Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging. Adv Drug Deliv Rev 37:139-157

    Article  PubMed  CAS  Google Scholar 

  • Klibanov AL (2005) Ligand-carrying gas-filed microbubbles: ultrasound contrast agents for tar-geted molecular imaging. Bioconjugate Chem 16:9-17

    Article  CAS  Google Scholar 

  • Korpanty G, Grayburn PA, Shohet RV et al (2005) Targeting vascular endothelium with avidin microbubbles. Ultrasound Med Biol 31:1279-1283

    Article  PubMed  Google Scholar 

  • Lange L, Fritzsch T, Hillmann J et al (1986) Right-heart echocontrast in the anesthetized dog after i.v. administration of a new standardized sonographic agent, 3rd communication: Comparison of various contrast agents employed in contrast echocardiography. Arzneim-Forsch 36: 1037-1040

    CAS  Google Scholar 

  • Lanza GM and Wickline SA (2001) Targeted ultrasonic contrast agents for molecular imaging and therapy. Prog Cardiovasc Dis 44:13-31

    Article  PubMed  CAS  Google Scholar 

  • Lee F and Ginzton L (1983) A central nervous system complication of contrast echocardiography. J Clin Ultrasound 11:292-294

    Article  PubMed  CAS  Google Scholar 

  • Leong-Poi H, Christiansen J, Klibanov AL et al (2003) Noninvasive Assessment of Angiogenesis by Ultrasound and Microbubbles Targeted to αv -Integrins. Circulation 107:455-460

    Article  PubMed  CAS  Google Scholar 

  • Lindner JR, Coggins MP, Kaul S et al (2000) Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin- and complement-mediated adherence to activated leukocytes. Circulation 101:668-675

    PubMed  CAS  Google Scholar 

  • Lindner JR, Dayton PA, Coggins MP et al (2000) Noninvasive imaging of inflammation by ultra-sound detection of phagocytosed microbubbles. Circulation 102:531-538

    PubMed  CAS  Google Scholar 

  • Lindner JR, Song J, Xu F et al (2000) Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes. Circulation 102:2745-2750

    PubMed  CAS  Google Scholar 

  • Lindner JR, Song J, Christiansen J et al (2001) Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation 104:2107-2112

    Article  PubMed  CAS  Google Scholar 

  • Linker R, Reinhardt M, Bendszus M et al (2005) In vivo molecular imaging of adhesion molecules in experimental autoimmune encephalomyelitis (EAE). J Autoimmunity 25:199-205

    Article  CAS  Google Scholar 

  • M äurer M, Linker R, Hauff P et al (2003) Imaging of ICAM-1 in experimental autoimmune ene-cephalomyelitis (EAE) with a specific ultrasound contrast agent. Neurology 60:A423

    Google Scholar 

  • M äurer M, Linker R, Reinhardt M et al (2005) M öglichkeiten target-spezifischer molekularer Bildgebung mit Ultraschallkontrastmitteln. Radiologe 45:560-568

    Article  Google Scholar 

  • Mattrey RF (1983) Perfluorochemicals as liver- and spleen-seeking ultrasound contrast agents. J Ultrasound Med 2:173-176

    PubMed  CAS  Google Scholar 

  • Mattrey RF, Kono Y, Baker K et al (2002) Sentinel lymph node imaging with microbubble ultra-sound contrast Material. Acad Radiol 9(Suppl 1):S231-S235

    Article  PubMed  Google Scholar 

  • Oussoren C, Zuidema J, Crommelin DJ et al (1997) Lymphatic uptake and biodistribution of lipo-somes after subcutaneous injection. II. Influence of liposomal size, lipid composition and lipid dose. Biochim Biophys Acta 1328:261-272

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt M, Fritzsch T, Heldmann D et al (1993) Use of microcapsules as contrasting agents in colour Doppler sonography. WO 93/25241

    Google Scholar 

  • Reinhardt M, Hauff P, Linker RA et al (2005a) Ultrasound derived imaging and quantification of cell adhesion molecules in experimental autoimmune encephalomyelitis (EAE) by Sensitive Particle Acoustic Quantification (SPAQ). Neuroimage 27:267-278

    Article  CAS  Google Scholar 

  • Reinhardt M, Hauff P, Briel A et al (2005b) Sensitive Particle Acoustic Quantification (SPAQ): a new ultrasound-based approach for the quantification of ultrasound contrast media in high concentrations. Invest Radiol 40:2-7

    CAS  Google Scholar 

  • Rychak JJ et al (2007) Microultrasound molecular imaging of vascular endothelial growth factor receptor 2 in a mouse model of tumor angiogenesis. Mol Imaging 6:289-296

    PubMed  Google Scholar 

  • Schirner M, Menrad A, Stephens A et al (2004) Molecular imaging of tumor angiogenesis. Ann N Y Acad Sci 1014:67-75

    Article  PubMed  CAS  Google Scholar 

  • Schlief R (1997) Echo-enhancing agents: their physics and pharmacology. In: Nanda NC, Schlief R, Goldberg BB (eds) Advances in echo imaging using contrast enhancement, 2nd edn. Kluwer, Dordrecht, pp 85-113

    Google Scholar 

  • Schrope V, Newhouse VL, Uhlendorf V (1992) Simulated capillary blood flow measurement using a non-linear ultrasonic contrast agent. Ultrasonic Imaging 14:134-158

    Article  PubMed  CAS  Google Scholar 

  • Schumann PA, Christiansen JP, Quigley RM et al (2002) Targeted-microbubble binding selectively to GPIIb IIIa receptors of platelet thrombi. Invest Radiol 37:587-593

    Article  PubMed  CAS  Google Scholar 

  • Simionescu M (2000) Structural, biochemical and functional differentiation of the vascular en-dothelium. In: Risau W, Rubanyi GM (eds) Morphogenesis of the endothelium. Harwood, Amsterdam, pp 1-22

    Google Scholar 

  • Simon RH, Ho SY, D’Arrigo J et al (1990) Lipid-coated ultrastable microbubbles as a contrast agent in neuro-sonography. Invest Radiol 25:1300-1304

    Article  PubMed  CAS  Google Scholar 

  • Streeter PR, Rouse BT, Butcher EC (1988) Immunohistologic and functional characterization of a vascular addressing involved in lymphocyte homing into peripheral lymph nodes. J Cell Biol 107:1853-1862

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi M, Ogunyanki K, Pandian NG et al (1999) Enhanced visualization of intravascular and left atrial appendage thrombus with the use of a thrombus-targeting ultrasonographic contrast agent (MRX-408A1): in vivo experimental echocardiographic studies. J Am Soc Echocardiogr 12:1015-1021

    Article  PubMed  CAS  Google Scholar 

  • Tiemann K, Pohl C, Schlosser T et al (2000) Stimulated acoustic emission: pseudo-Doppler shifts seen during the destruction of non-moving microbubbles. Ultrasound Med Biol 26:1161-1167

    Article  PubMed  CAS  Google Scholar 

  • Uhlendorf V, Hoffmann C (1994) Nonlinear acoustic response of coated microbubbles in diagnostic ultrasound. Ultrasonics Symposium, Cannes, France, pp 1559-1562

    Google Scholar 

  • Villanueva FS, Jankowski RJ, Klibanov S et al (1998) Microbubbles targeted to intercellular adhe-sion molecule-1 bind to activated coronary artery endothelial cells. Circulation 98:1-5

    PubMed  CAS  Google Scholar 

  • Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316-333

    PubMed  CAS  Google Scholar 

  • Weller GER, Lu E, Csikari MM (2003) Ultrasound imaging of acute cardiac transplant rejection with microbubbles targeted to intercellular adhesion molecule-1. Circulation 108:218-224

    Article  PubMed  Google Scholar 

  • Weller GER, Wong MKK, Modzelewski RA et al (2005) Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine. Cancer Res 65:533-539

    PubMed  CAS  Google Scholar 

  • Wright WH, McCreery TP, Krupinski EA et al (1998) Evaluation of new thrombus-specific ultra-sound contrast agent. Acad Radiol 5(Suppl 1):S240-S242

    Article  PubMed  Google Scholar 

  • Wu Y, Unger EC, McCreery TP et al (1998) Binding and lysing of blood clots using MRX-408. Invest Radiol 33:880-885

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hauff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hauff, P., Reinhardt, M., Foster, S. (2008). Ultrasound Contrast Agents for Molecular Imaging. In: Semmler, W., Schwaiger, M. (eds) Molecular Imaging I. Handbook of Experimental Pharmacology, vol 185/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72718-7_11

Download citation

Publish with us

Policies and ethics