Skip to main content

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 358))

Abstract

Model predictive control (MPC) is a very effective approach to control nonlinear systems, especially when the systems are high dimensional and/or constrained. MPC formulates the problem of input trajectory generation as an optimization problem. However, due to model mismatch and disturbances, frequent re-calculation of the trajectories is typically called for. This paper proposes a two-time-scale control scheme that uses less frequent repeated trajectory generation in a slow loop and time-varying linear feedback in a faster loop. Since the fast loop reduces considerably the effect of uncertainty, trajectory generation can be done much less frequently. The problem of trajectory generation can be treated using either optimization-based MPC or flatness-based system inversion. As proposed, the method cannot handle hard constraints. Both MPC and the two-time-scale control scheme are tested via the simulation of a flying robotic structure. It is seen that the MPC scheme is too slow to be considered for real-time implementation on a fast system. In contrast, the two-time-scale control scheme is fast, effective and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bemporad, A. (1998). Reducing conservatism in predictive control of constrained systems with disturbances. In: 37th IEEE Control and Decision Conference. Tampa, FL. pp. 1384–1389.

    Google Scholar 

  2. Bemporad, A. andM. Morari (1999). Robust Model Predictive Control: A Survey. Springer Verlag.

    Google Scholar 

  3. Bryson, A. E. (1999). Dynamic Optimization. Addison-Wesley, Menlo Park, California

    Google Scholar 

  4. Camacho, E. and Bordons C. (2005). Nonlinear Model Predictive Control: an Introductory Survey NMPC05, Freudenstadt, Germany

    Google Scholar 

  5. Christofides, P.D. and Daoutidis P. (1996). Feedback Control of Two-Time-Scale Nonlinear Systems International Journal of Control. 63, 965–994

    Article  MATH  MathSciNet  Google Scholar 

  6. DeHaan D. and Guay M. (2005). A New Real-Time Method for Nonlinear Model Predictive Control NMPC05, Freudenstadt, Germany

    Google Scholar 

  7. Fliess, M., J. Lévine, Ph. Martin and P. Rouchon (1995) Flatness and defect of nonlinear systems: Introductory theory and examples International Journal of Control 61(6), 1327–1361.

    Article  MATH  MathSciNet  Google Scholar 

  8. Fliess, M., J. Lévine, Ph. Martin and P. Rouchon (1999). A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems IEEE Trans. Automat. Contr. 38, 700–716.

    Google Scholar 

  9. Gros, S. (2005). Modeling and control of a VTOL structure. Internal Report. Laboratoire d’Automatique, Ecole Polytechnique Fédérale de Lausanne

    Google Scholar 

  10. Hagenmeyer V. and Delaleau E. (2003). Exact feedforward linearization based on differential flatness International Journal of Control 76, 573–556.

    Article  MathSciNet  Google Scholar 

  11. Kouvaritakis, B., J. A. Rossiter and J. Schuurmans (2000). Efficient robust predictive control. IEEE Trans. Automat. Contr. 45(8), 1545–1549.

    Article  MATH  MathSciNet  Google Scholar 

  12. Lee, J.H. andZ. Yu (1997). Worst-case formulations of model-predictive control for systems with bounded parameters. Automatica 33(5), 763–781.

    Article  MATH  MathSciNet  Google Scholar 

  13. Alamir M.(2005). A low dimensional contractive NMPC scheme for nonlinear systems stabilization: Theoretical framework and numerical investigation on relatively fast systems. NMPG05, Freudenstadt, Germany.

    Google Scholar 

  14. Mayne, D.Q., J. B. Rawlings, C. V. Rao and P. O. M. Scokaert (2000). Constrained model predictive control: Stability and optimality. Automatica 36(6), 789–814.

    Article  MATH  MathSciNet  Google Scholar 

  15. Morari, M. andJ. H. Lee (1999). Model predictive control: Past, present, and future. Comp. Chem. Eng. 23, 667–682.

    Article  Google Scholar 

  16. Ronco, E., B. Srinivasan, J. Y. Favez and D. Bonvin (2001). Predictive control with added feedback for fast nonlinear systems. In: European Control Conference. Porto, Portugal, pp. 3167–3172.

    Google Scholar 

  17. Scokaert, P.O. andD. Q. Mayne (1998). Min-max feedback model predictive control for constrained linear systems. IEEE Trans. Automat. Contr. 43, 1136–1142.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gros, S., Buccieri, D., Mullhaupt, P., Bonvin, D. (2007). A Two-Time-Scale Control Scheme for Fast Unconstrained Systems. In: Findeisen, R., Allgöwer, F., Biegler, L.T. (eds) Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, vol 358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72699-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72699-9_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72698-2

  • Online ISBN: 978-3-540-72699-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics