Skip to main content

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 358))

Abstract

A nonlinear model predictive control (NMPC) formulation is used to prevent an exothermic fed-batch chemical reactor from thermal runaways even in the case of total cooling failure. Detailed modeling of the reaction kinetics and insight into the process dynamics led to the formulation of a suitable optimization problem with safety constraints which is then successively solved within the NMPC scheme. Although NMPC control-loops can exhibit a certain degree of inherent robustness, an explicit consideration of process uncertainties is preferable not only for safety reasons. This is approached by reformulating the open-loop optimization problem as a min-max problem. This corresponds to a worst-case approach and leads to even more cautious control moves of the NMPC in the presence of uncertain process parameters. All results are demonstrated in simulations for the esterification process of 2-butyl.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer I, Bock HG, Schiöder JP (1999) “DAESOL—a BDF-code for the numerical solution of differential algebraic equations”, Internal report IWR-SFB 359, Universität Heidelberg

    Google Scholar 

  2. Benuzzi A and Zaldivar JM (eds) (1991) “Safety of Chemical Reactors and Storage Tanks”, Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  3. Bock HG and Plitt KJ (1984) “A multiple shooting algorithm for direct solution of optimal control problems”, Proc. 9th IFAC World Congress Budapest

    Google Scholar 

  4. Chen H, Scherer CW, Allgöwer F (1997) “A game theoretic approach to nonlinear robust receding horizon control of constraint systems”, American Control Conference, Albuquerque, USA: 3073–3077

    Google Scholar 

  5. DeNicolao G, Magni L, Scattolini R (2000) “Stability and robustness of nonlinear receding horizon control”. In: Allgöwer F, Zheng A (eds) Nonlinear Model Predictive Control. Birkhäuser Basel.

    Google Scholar 

  6. Diehl M, Bock HG, Schiöder JP, Findeisen R, Nagy Z, Allgöwer F (2002) “Realtime optimization and Nonlinear Model Predictive Control of Processes governed by differential-algebraic equations”, J. of Proc. Control 12:577–585

    Article  Google Scholar 

  7. Diehl M, Findeisen R, Bock HG, Schiöder JP, Allgöwer F (2005) “Nominal stability of the real-time iteration scheme for nonlinear model predictive control”, IEE Proc. Contr. Theory & Appl. 152(3):296–308

    Article  Google Scholar 

  8. Diehl M, Bock HG, Kostina E (2005) “An approximation technique for robust nonlinear optimization”, Mathematical Programming B (accepted)

    Google Scholar 

  9. Hugo P, Steinbach J, Stoessel F (1988) “Calculation of the maximum temperature in stirred reactors in case of a breakdown of cooling”, Chemical Eng. Science 43:2147–2152

    Article  Google Scholar 

  10. Körkel S, Kostina E, Bock HG, Schiöder JP (2004) “Numerical methods for optimal control problems in design of robust optimal experiments for nonlinear dynamic processes”, Optimization Methods & Software 19:327–338

    Article  MATH  MathSciNet  Google Scholar 

  11. Lee JH, Yu Z (1997) “Worst-case formulations of model predictive control for systems with bounded parameters”, Automatica 33(5):763–781

    Article  MATH  MathSciNet  Google Scholar 

  12. Leineweber DB, Bauer I, Bock HG, Schiöder JP (2003) “An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization —part I: theoretical aspects”, Comp. & Chem. Eng. 27:157–166

    Article  Google Scholar 

  13. Li P, Wendt M, Wozny G (2002) “A probabilistically constrained model predictive controller”, Automatica, 38: 1171–1176

    Article  MATH  MathSciNet  Google Scholar 

  14. Magni L, Nijmeijer H, van der Schaft AJ (2001) “A receding-horizon approach to the nonlinear H-infinity control problem”, Automatica 37:429–435

    Article  MATH  Google Scholar 

  15. Nagy Z, Braatz RD (2004) “Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis”, Journal of Process Control 14:411–422

    Article  Google Scholar 

  16. Sahinidis NV (2004) “Optimization under uncertainty: state-of-the-art and opportunities”, Comp. & Chem. Eng. 28:971–983

    Article  Google Scholar 

  17. Ubrich O, Srinivasan B, Lerena P, Bonvin D, Stoessel F (1999) “Optimal feed profile for a second order reaction in a semi-batch reactor under safety constraints —experimental study”, J. of Loss Prev. 12:485–493

    Article  Google Scholar 

  18. Westerterp KR, Molga E (2004) “No more Runaways in Fine Chemical Reactors”, Ind. Eng. Chem. Res. 43:4585–4594

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kühl, P., Diehl, M., Milewska, A., Molga, E., Bock, H.G. (2007). Robust NMPC for a Benchmark Fed-Batch Reactor with Runaway Conditions. In: Findeisen, R., Allgöwer, F., Biegler, L.T. (eds) Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, vol 358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72699-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72699-9_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72698-2

  • Online ISBN: 978-3-540-72699-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics