Skip to main content

Abstract

Stochastic uncertainty is present in many control engineering problems, and is also present in a wider class of applications, such as finance and sustainable development. We propose a receding horizon strategy for systems with multiplicative stochastic uncertainty in the dynamic map between plant inputs and outputs. The cost and constraints are defined using probabilistic bounds. Terminal constraints are defined in a probabilistic framework, and guarantees of closed-loop convergence and recursive feasibility of the online optimization problem are obtained. The proposed strategy is compared with alternative problem formulations in simulation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.V. Kothare, V. Balakrishnan, and M. Morari. Robust constrained model predictive control using linear matrix inequalities. Automatica, 32:1361–1379, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  2. J.C. Allwright and G.C. Papvasiliou. Linear programming and robust model-predictive control using impulse-responses. Systems & Control Letters, 18:159–164, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  3. P.O.M. Scokaert and D.Q. Mayne. Min-max feedback model predictive control for constrained linear systems. IEEE Trans. Autom. Control, 43:1136–1142, 1991.

    Article  MathSciNet  Google Scholar 

  4. A. Bemporad, F. Borrelli, and M. Morari. Min-max control of constrained uncertain discrete-time linear systems. IEEE Trans. Automatic Control, 48(9):1600–1606, 2003.

    Article  MathSciNet  Google Scholar 

  5. D.W. Clarke, C. Mothadi, and P.S. Tuffs. Generalized predictive control. Automatica, 23:137–160, 1987.

    Article  MATH  Google Scholar 

  6. P. Li, M. Wendt, and G. Wozny. A probabilistically constrained model predictive controller. Automatica, 38(7):1171–1176, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  7. I. Batina. Model predictive control for stochastic systems by randomized algorithms. PhD thesis, Technische Universiteit Eindhoven, 2004.

    Google Scholar 

  8. A.J. Felt. Stochastic linear model predictive control using nested decomposition. In Proc. American Control Conf., pages 3602–3607, 2003.

    Google Scholar 

  9. B. Kouvaritakis, M. Cannon, and P. Couchman. MPC as a tool for sustain-able development integrated policy assessment. IEEE Trans. Autom. Control, 51(1):145–149, 2006.

    Article  MathSciNet  Google Scholar 

  10. J.H. Lee and B.L. Cooley. Optimal feedback control strategies for state-space systems with stochastic parameters. IEEE Trans. Autom. Control, 43(10):1469–1475, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  11. D. van Hessem, C.W. Scherer, and O.H. Bosgra. LMI-based closed-loop economic optimization of stochastic process operation under state and input constraints. In Proc. 40th IEEE Conf. Decision Control, Orlando, 2001.

    Google Scholar 

  12. P. Couchman, M. Cannon, and B. Kouvaritakis. Stochastic MPC with inequality stability constraints. Automatica, 2006. Submitted.

    Google Scholar 

  13. P. Couchman, B. Kouvaritakis, and M. Cannon. LTV models in MPC for sustainable development. Int. J. Control, 79(l):63–73, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  14. D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Constrained model predictive control: Stability and optimality. Automatica, 36:789–814, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Cannon, B. Kouvaritakis, and V. Deshmukh. Enlargement of polytopic terminal region in NMPC by interpolation and partial invariance. Automatica, 40:311–317, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory. SIAM, 1994.

    Google Scholar 

  17. M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order cone programming. Linear Algebra and its Applications, 284:193–228, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  18. B.T. Polyak. Introduction to optimization. Opt. Software Inc., 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cannon, 1., Couchman, P., Kouvaritakis, B. (2007). MPC for Stochastic Systems. In: Findeisen, R., Allgöwer, F., Biegler, L.T. (eds) Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, vol 358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72699-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72699-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72698-2

  • Online ISBN: 978-3-540-72699-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics