Skip to main content

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 358))

Abstract

The robustness of asymptotic stability with respect to measurement noise for discrete-time feedback control systems is discussed. It is observed that, when attempting to achieve obstacle avoidance or regulation to a disconnected set of points for a continuous-time system using sample and hold state feedback, the noise robustness margin necessarily vanishes with the sampling period. With this in mind, we propose two modifications to standard model predictive control (MPC) to enhance robustness to measurement noise. The modifications involve the addition of dynamical states that make large jumps. Thus, they have a hybrid flavor. The proposed algorithms are well suited for the situation where one wants to use a control algorithm that responds quickly to large changes in operating conditions and is not easily confused by moderately large measurement noise and similar disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bemporad, F. Borrelli, and M. Morari. Optimal controllers for hybrid systems: Stability and piecewise linear explicit form. Proc. IEEE Conf. on Decision and Control, Vol. 2, pp. 1810–1815, (2000).

    Google Scholar 

  2. F.H. Clarke, S. Yu, S. Ledyaev, L. Rifford, and R.J. Stern. Feedback stabilization and Lyapunov functions. SIAM Journal on Control and Optimization, Vol. 39, pp. 25–48, (2000).

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Collins. A trajectory-space approach to hybrid systems. Proc. of the International Symposium on Mathematical Theory of Networks and Systems, (2004).

    Google Scholar 

  4. J-M. Coron and L. Rosier. A relation between continuous time-varying and discontinuous feedback stabilization. Journal of Mathematical Systems, Estimation, and Control, Vol. 4, pp. 67–84, (1994).

    MATH  MathSciNet  Google Scholar 

  5. R. Goebel, J.P. Hespanha, A.R. Teel, C. Cai, and R.G. Sanfelice. Hybrid systems: Generalized solutions and robust stability. Proc. NOLCOS, Vol. 1, pp. 1–12, (2004).

    Google Scholar 

  6. R. Goebel and A.R. Teel. Results on solution sets to hybrid systems with applications to stability theory. Proc. American Control Gonf., Vol. 1, pp. 557–562, (2005).

    Article  Google Scholar 

  7. R. Goebel and A.R. Teel. Solutions to hybrid inclusions via set and graphical convergence. Automatica, Vol. 42, pp. 573–587, (2006).

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Grimm, M.J. Messina, S.E. Tuna, and A.R. Teel. Examples when nonlinear model predictive control is nonrobust. Automatica, Vol. 40, pp. 1729–1738, (2004).

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Grimm, M.J. Messina, S.E. Tuna, and A.R. Teel. Model predictive control: for want of a local control Lyapunov function, all is not lost. IEEE Trans. Auto. Control, Vol. 50, pp. 546–558, (2005).

    Article  MathSciNet  Google Scholar 

  10. W.P.M.H Heemels, B. De Schutter, and A. Bemporad. Equivalence of hybrid dynamical models. Automatica, Vol. 37, pp.1085–1091, (2001).

    Article  MATH  Google Scholar 

  11. Y. Kuwata and J. How. Receding horizon implementation of MILP for vehicle guidance. In Proc. American Control Gonf., pp. 2684–2685, (2005).

    Google Scholar 

  12. T. Lapp and L. Singh. Model predictive control based trajectory optimization for nap-of-the-earth (NOE) flight including obstacle avoidance. Proc. American Control Conf., Vol. 1, pp. 891–896, (2004).

    Google Scholar 

  13. J. Lygeros, K.H. Johansson, S.N. Simić, J. Zhang, and S.S. Sastry. Dynamical properties of hybrid automata. IEEE Trans. Auto. Control, Vol. 48, pp. 2–17, (2003).

    Article  Google Scholar 

  14. D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Constrained model predictive control: Stability and optimality. Automatica, Vol. 36, pp. 789–814, (2000).

    Article  MATH  MathSciNet  Google Scholar 

  15. M.J. Messina, S.E. Tuna, and A.R. Teel. Discrete-time certainty equivalence out-put feedback: allowing discontinuous control laws including those from model predictive control. Automatica, Vol. 41, pp. 617–628, (2005).

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Mhaskar, N.H. El-Farrah, and P.D. Christofides. Robust hybrid predictive con-trol of nonlinear systems. Automatica, Vol. 41, pp. 209–217, (2005).

    Article  MATH  Google Scholar 

  17. H. Michalska and D.Q. Mayne. Robust receding horizon control of constrained nonlinear systems. IEEE Trans. Auto. Control, Vol. 38, pp. 1623–1633, (1993).

    Article  MATH  MathSciNet  Google Scholar 

  18. P. Ogren and N.E. Leonard. A convergent dynamic window approach to obstacle avoidance. IEEE Trans. on Robotics, Vol. 21, pp. 188–195, (2005).

    Article  Google Scholar 

  19. C. Prieur. Perturbed hybrid systems, applications in control theory. Nonlinear and Adaptive Control NCN4 2001 (Lecture Notes in Control and Information Sciences Vol. 281), pp. 285–294, (2003).

    Google Scholar 

  20. R. G. Sanfelice, R. Goebel, and A.R. Teel. Invariance principles for hybrid systems with connections to detectability and asymptotic stability. To appear in IEEE Trans. Auto. Control, (February 2008).

    Google Scholar 

  21. E.D. Sontag. Clocks and insensitivity to small measurement errors. Control, Op-timisation and Calculus of Variations, Vol. 4, pp. 537–557, (1999).

    Article  MATH  MathSciNet  Google Scholar 

  22. A. van der Schaft and H. Schumacher. An Introduction to Hybrid Dynamical Systems (Lecture Notes in Control and Information Sciences Vol. 251), (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tuna, S.E., Sanfelice, R.G., Messina, M.J., Teel, A.R. (2007). Hybrid MPC: Open-Minded but Not Easily Swayed. In: Findeisen, R., Allgöwer, F., Biegler, L.T. (eds) Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, vol 358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72699-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72699-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72698-2

  • Online ISBN: 978-3-540-72699-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics